Skip to main content

Part of the book series: Mathematics and Its Applications ((MAIA,volume 299))

  • 298 Accesses

Abstract

In this chapter, we outline some (mainly, recent) developements of Lie-point symmetry theory which are present in the literature; many of these are actually open fields and questions. We have chosen not to include those topics for which a comprehensive treatment is available either in books either in review or introductory papers; some notes on these appear in the ”missing sections” section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abud and G. Sartori; ”The geometry of spontaneous symmetry breaking”, Ann. Phys. 150 (1983), 307

    Article  MathSciNet  MATH  Google Scholar 

  2. V.I. Arnold, ”Equations differentielles ordinaires”, M.I.R., Moscow (1974); ”Geometrical Methods in the Theory of Ordinary Differential Equations”; Springer, Berlin, 1983; ”Equations Differentielles Ordinaires - II ed.”, Mir, Moscow, 1990

    Google Scholar 

  3. V.I. Arnold, ”Les methodes mathematiques de la mecanique classique”, M.I.R., Moscow (1976); ”Mathematical Methods of Classical Mechanics”; Springer, Berlin, 1978; II ed., 1989

    Google Scholar 

  4. V.I. Arnold, ”Chapitres supplementaires de la théorie des equations différentielles ordinaires”, M.I.R., Moscow (1980)

    Google Scholar 

  5. V.I. Arnold; ”Contact geometry and wave propagation”; Les Editions de L’Enseignement Mathematique (Geneva), 1990

    Google Scholar 

  6. V.I. Arnold, S.M. Gusein-Zade and A.N. Varchenko: ”Singularities of differentiable mappings”; Birkhauser (Basel) 1985

    Google Scholar 

  7. R.L. Anderson, J. Hamad and P. Winternitz: ”Group theoretical approach to superposition rules for systems of Riccati equations”; Left. Math. Phys. 5 (1981), 143

    MATH  Google Scholar 

  8. J. Beckers, L. Gagnon, V. Russin and P. Winternitz: ”Superposition formulas for nonlinear superequations”; J. Math. Phys. 31 (1990), 2528

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Beckers, V. Russin, and P. Winternitz, ”Nonlinear equations with superposition formulas and the exceptional group G(2). I. Complex and real forms of g(2) and their maximal subalgebras” J. Math. Phys. 27 (1986), 2217

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Beckers, V. Russin, and P. Winternitz, ”Nonlinear equations with superposition formulas and the exceptional group G(2). II. Classification of the equations” J. Math. Phys. 28 (1987), 520

    Article  MathSciNet  MATH  Google Scholar 

  11. G.W. Bluman and J.D. Cole, ”The general similarity solution of the heat equation”; J. Math. Mech. 18 (1969), 1025

    MathSciNet  MATH  Google Scholar 

  12. G.W. Bluman and J.D. Cole: ”Similarity methods for differential equations”; Springer (New York) 1974

    Google Scholar 

  13. G.W. Bluman and S. Kumei: ”Symmetries and differential equations”; Springer, New York, 1989

    Google Scholar 

  14. T.C. Bountis, V. Papageorgiou, and P. Winternitz, ”On the integrability of systems of nonlinear ordinary differential equations with superposition principles” J. Math. Phys. 27 (1986), 1215

    Article  MathSciNet  MATH  Google Scholar 

  15. C.P. Boyer and P. Winternitz: ”Symmetries of the self-dual Einstein equations. I. The infinite-dimensional symmetry group and its low-dimensional subgroups”; J. Math. Phys. 30 (1989), 1081

    Article  MathSciNet  MATH  Google Scholar 

  16. J.F. Carinema, M.A. Del Olmo and P. Winternitz: ”Cohomology and symmetry of differential equations”; in Dodonov and Man’ko 1991 (p. 272)

    Google Scholar 

  17. J.F. Carinema, M.A. Del Olmo and P. Winternitz, ”On the relation between weak and strong invariance of differential equations”; Lett. Math. Phys. 29 (1993), 151

    Article  MathSciNet  Google Scholar 

  18. P. Chossat and M. Golubitsky: ”Iterates of maps with symmetry”; SIAM J. Math. Anal. 19 (1988), 1259

    Article  MathSciNet  MATH  Google Scholar 

  19. P.A. Clarkson and M.D. Kruskal: ”New similarity reduction of the Boussinesq equation”; J. Math. Phys. 30 (1989), 2201

    Article  MathSciNet  MATH  Google Scholar 

  20. P.A. Clarkson and P. Winternitz: ”Nonclassical symmetry reduction for the Kadomtsev- Petviashvili equation”; Physica D 49 (1991), 257

    Article  MathSciNet  MATH  Google Scholar 

  21. B. Dorizzi, B. Grammaticos, A. Ramani and P. Winternitz: ”Are all the equations of the Kadomtsev- Petviashvili hierarchy integrable?”; J. Math. Phys. 27 (1986), 2848

    Article  MathSciNet  MATH  Google Scholar 

  22. D. David, N. Kamran, D. Levi, and P. Winternitz, ”Symmetry reduction for the KadomtsevPetviashvili equation using a loop algebra”; J. Math. Phys. 27 (1986), 1225

    Article  MathSciNet  MATH  Google Scholar 

  23. D. David, D. Levi and P. Winternitz: ”Backlund transformations and the infinite-dimensional symmetry group of the Kadomtsev- Petviashvili equation”; Phys. Lett. A 118 (1986), 390

    Article  MathSciNet  Google Scholar 

  24. D. David, D. Levi and P. Winternitz: ”Equations invariant under the symmetry group of the Kadomtsev- Petviashvili equation”; Phys. Lett. A 129 (1988), 161

    Article  MathSciNet  Google Scholar 

  25. M.A. Del Olmo, M.A. Rodriguez, and P. Winternitz, ”Simple subgroups of simple Lie groups and nonlinear differential equations with superposition principles”; J. Math. Phys. 27 (1986), 14

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Del Olmo, M.A. Rodriguez, and P. Winternitz, ”Superposition formulas for rectangular matrix Riccati equations”; J. Math. Phys. 28 (1987), 530

    Article  MathSciNet  MATH  Google Scholar 

  27. W.I. Fushchich and A.G. Nikitin: ”On the new invariance algebras and superalgebras of relativistic wave equations”; J. Phys. A 20 (1987), 537

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Gaeta: ”Lie point symmetries and multidimensional maps”; Preprint A078.0891, CPT Ecole Polytechnique, 1991

    Google Scholar 

  29. G. Gaeta: ”Lie-point symmetries of dicrete versus continuous dynamical systems”; Phys. Lett. A 178 (1993), 376

    Article  MathSciNet  Google Scholar 

  30. L. Gagnon, V. Hussin, and P. Winternitz, ”Nonlinear equations with superposition formulas and exceptional group G(2). III. The superposition formulas” J. Math. Phys. 29 (1988), 2145

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Golubitsky: ”Primitive actions and maximal subgroups of Lie groups”; J. Diff. Geom. 7 (1972), 175

    MathSciNet  MATH  Google Scholar 

  32. F. Gonzalez-Gascon and A. Gonzalez-Lopez, ”Newtonian systems of differential equations, integrable by quadratures, with trivial group of point symmetries”; Phys. Lett. A 129 (1988), 153

    Article  MathSciNet  Google Scholar 

  33. A. Gonzalez-Lopez: ”Symmetry and integrability by quadratures of ordinary differential equations”; Phys. Lett. A 133 (1988), 190

    Article  MathSciNet  Google Scholar 

  34. A. Gonzalez Lopez: ”Symmetries of linear systems of second order ordinary differential equations”; J. Math. Phys. 29 (1988), 1097

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Jimbo and T. Miwa; Publ. RIMS 19 (1983), 943

    Article  MathSciNet  MATH  Google Scholar 

  36. E.G. Kalnins and W. Miller, Jr., ”Separation of variables on n-dimensional Riemannian manifolds. I. The n-sphere S ” and Euclidean n-space R nJ. Math. Phys. 27 (1986), 1721.

    Article  MathSciNet  MATH  Google Scholar 

  37. E.G. Kainins and W. Miller, Jr., ”R-separation of variables for the time-dependent Hamilton-Jacobi and Schroedinger equations”; J. Math. Phys. 28 (1987), 1005

    Article  MathSciNet  Google Scholar 

  38. D. Kramer, H. Stephani, M. MacCallum and E. Herlt: ”Exact solutions of Einstein’s field equations”; Cambridge University Press 1980

    Google Scholar 

  39. J. Krause and L. Michel: ”Classification of the symmetries of ordinary differential equations”; in Dodonov and Man’ko eds., Proceedings ICGTMP, Springer, 1991 (p. 251)

    Google Scholar 

  40. Y.Q. Lee and J.F. Lu: ”Prolongation structure and infinite dimensional algebra for the isotropic LandauLifsits equation”; Phys. Lett. A 135 (1989), 117

    Article  MathSciNet  Google Scholar 

  41. D. Levi and P. Winternitz: ”The cylindrical Kadomtsev- Petviashvili equation: its Kac- MoodyVirasoro algebra and relation to the KP equation”; Phys. Lett. A 129 (1988), 165

    Article  MathSciNet  Google Scholar 

  42. D. Levi and P. Winternitz, ”Non-classical symmetry reduction: example of the Boussinesq equation”; J. Phys. A 22 (1989), 2915

    Article  MathSciNet  MATH  Google Scholar 

  43. L. Martina and P. Winternitz: ”Analysis and applications of the symmetry group of the multidimensional three-wave resonant interaction problem”; Ann. Phys. (N. Y.) 196 (1989), 231

    Article  MathSciNet  MATH  Google Scholar 

  44. E. Laguerre: ”Sur quelques invariants des equations differentielles lineaires”; C.R. Acad. Sci. Paris 88 (1879), 224

    MATH  Google Scholar 

  45. V.V. Lychagin: ”Contact geometry and non-linear second-order differential equations”; Russ. Math. Surv. 34 (1979), 149

    Article  MathSciNet  MATH  Google Scholar 

  46. F.M. Mahomed and P.G. Leach: ”Symmetry Lie algebras of n-th order ordinary differential equations”; J. Math. Anal. Appl. 151 (1991), 80

    Article  MathSciNet  Google Scholar 

  47. J. Mather: ”Stability of C∞ mapping: I. The division theorem”; Ann. Math. 87 (1968), 89

    Article  MathSciNet  MATH  Google Scholar 

  48. L. Michel: ”Nonlinear group action. Smooth action of compact Lie groups on manifolds”. In: ”Statistical Mechanics and Field Theory”, R.N. Sen and C. Weil eds., Israel University Press, Jerusalem 1971

    Google Scholar 

  49. W. Miller, ”Symmetry Groups and Their Applications”, Academic Press, New York, (1972)

    Google Scholar 

  50. A.V. Mikhailov, A.B. Shabat and R.I. Yamilov: ” The symmetry approach to the classification of non-linear equations. Complete list of integrable systems”; Russ. Math. Surv. 42 (1987), 1

    Article  MathSciNet  Google Scholar 

  51. A.V. Mikhailov, A.B. Shabat and V.V. Sokolov: ” The symmetry approach to the classification of integrable systems”; in V.E. Zakharov, ed.: ”What is integrability ?”; Springer (Berlin) 1990

    Google Scholar 

  52. P.J. Olver: ”Application of Lie groups to differential equations”; Springer, New York, 1986

    Book  Google Scholar 

  53. M.A. Olshanetsky and A.M. Perelomov, ”Completely integrable Hamiltonian systems connected with semisimple Lie algebras”; Inv. Math. 37 (1976), 93

    Article  MathSciNet  MATH  Google Scholar 

  54. M.A. Olshanetsky and A.M. Perelomov, ”Classical integrable finite dimensional systems related to Lie algebras”; Phys. Rep. 71 (1981), 313

    Article  MathSciNet  Google Scholar 

  55. P.J. Olver and P. Rosenau: ”The construction of special solutions to partial differential equations”; Phys. Lett. A 114 (1986), 107

    Article  MathSciNet  Google Scholar 

  56. P.J. Olver and P. Rosenau: ”Group-invariant solutions of differential equations”; SIAM J. Appl. Math. 47 (1987), 263

    Article  MathSciNet  MATH  Google Scholar 

  57. G. Paquin and P. Winternitz: ”Group theoretical analysis of dispersive long wave equations in two space dimensions”; Physica D 48 (1990), 122

    Article  MathSciNet  Google Scholar 

  58. A.M. Perelomov, ”Integrable systems of classical mechanics and Lie algebras”; Birkhauser, Basel, 1990

    Book  Google Scholar 

  59. E. Pucci, ”Similarity reductions of partial differential equations”; J. Phys. A 25 (1992), 2631

    Article  MathSciNet  MATH  Google Scholar 

  60. E. Pucci and G. Saccomandi, ”On the weak symmetry group of partial differential equations”; J. Math. Anal. Appl. 183 (1992), 588

    Article  MathSciNet  Google Scholar 

  61. J. Rubin and P. Winternitz: ”Point symmetries of conditionally integrable nonlinear evolution equations”; J. Math. Phys. 31 (1990), 2085

    Article  MathSciNet  MATH  Google Scholar 

  62. J. Saunders: ”Jet fields, connections and second order differential equations”; J. Phys. A 20 (1987) 3261

    Article  MathSciNet  MATH  Google Scholar 

  63. D.J. Saunders: ”The geometry of jet bundles”; Cambridge 1990

    Google Scholar 

  64. S. Shnider and P. Winternitz, ”Nonlinear equations with superposition principles and the theory of transitive primitive Lie algebras”, Lett. Math. Phys. 8 (1984), 69

    Article  MathSciNet  MATH  Google Scholar 

  65. S. Shnider and P. Winternitz, ”Classification of systems of nonlinear ordinary differential equations with superposition principles”; J. Math. Phys. 25 (1984), 3155

    Article  MathSciNet  MATH  Google Scholar 

  66. V.V. Sokolov: ”Pseudosymmetries and differential substitutions”; Funct. Anal. Appl. 22 (1986), 121

    Article  Google Scholar 

  67. V.V. Sokolov: ”On the structure of the symmetry algebra for the one-field evolution equation”; Soy. Math. Dokl. 35 (1987), 635

    MATH  Google Scholar 

  68. V.V. Sokolov: ”On the symmetries of evolution equations”; Russ. Math. Surv. 43 (1988), 165

    Article  MATH  Google Scholar 

  69. V.V. Sokolov and A.B. Shabat: ”Classification of integrable evolution equations”; Soviet Sci. Rev. C 4 (1984), 221

    MathSciNet  MATH  Google Scholar 

  70. H. Stephani; ”Differential equations. Their solution using symmetries”, Cambridge 1989

    Google Scholar 

  71. R. Vilela Mendes, ”Symmetries and stable periodic orbits for one-dimensional maps”; J. Math. Phys. 25 (1984), 855

    Article  MathSciNet  MATH  Google Scholar 

  72. A.M. Vinogradov: ”Local symmetries and conservation laws”; Acta Appl. Math.2 (1984), 21. See also I.S. Krasilshchik and A.M. Vinogradov: ”Nonlocal symmetries and the theory of coverings”; Acta Appl. Math.2 (1984), 79

    Google Scholar 

  73. A.M. Vinogradov: ”Symmetries and conservation laws of PDEs: basic notions and results”; Acta Appl. Math. 15 (1989), 3

    Article  MathSciNet  MATH  Google Scholar 

  74. E.M. Vorob’ev: ”Reduction of differential equations with symmetries”; Math. USSR Izv. 17 (1981)

    Google Scholar 

  75. E.M. Vorob’ev: ”Partial symmetries of systems of differential equations”; Soviet Math. Dokl. 33 (1986), 408

    MathSciNet  MATH  Google Scholar 

  76. E.M. Vorob’ev: ”Reduction and quotient equations for differential equations with symmetries”; Acta Appl. Math. 23 (1991), 1

    Article  MathSciNet  MATH  Google Scholar 

  77. E.M. Vorob’ev: ”Group theoretical analysis of the boundary value problem for yhe laminary layer equation”; Math. Modelling 3 (1991)

    Google Scholar 

  78. E.M. Vorob’ev: Symmetries of the compatibility conditions for systems of differential equations”; Acta Appl. Math. 28 (1992), 61

    MathSciNet  Google Scholar 

  79. P. Winternitz, ”Comments on superposition rules for nonlinear coupled first-order differential equations”; J. Math. Phys. 25 (1984), 2149

    Article  MathSciNet  MATH  Google Scholar 

  80. P. Winternitz: ”Kac- Moody- Virasoro symmetries of integrable nonlinear evolution equations”; in ”Symmetries and nonlinear phenomena”, World Scientific, 1988

    Google Scholar 

  81. P. Winternitz: ”Group theory and exact solutions of partially integrable differential systems”; in: ”Partially Integrable Evolution Equations in Physics”, R. Conte and N. Boccara eds., Kluwer 1990

    Google Scholar 

  82. P. Winternits: ”Conditional symmetries and conditional integrability for nonlinear systems”; in Dodonov and Man’ko 1991 (p. 263)

    Google Scholar 

  83. K.B. Wolf, ed.: ”Lie methods in Optics II”; Lect. Notes Phys. 352, Springer (Berlin) 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gaeta, G. (1994). Further Developements. In: Nonlinear Symmetries and Nonlinear Equations. Mathematics and Its Applications, vol 299. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1018-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1018-1_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4443-1

  • Online ISBN: 978-94-011-1018-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics