Skip to main content

Reduction and equivariant branching lemma

  • Chapter
Nonlinear Symmetries and Nonlinear Equations

Part of the book series: Mathematics and Its Applications ((MAIA,volume 299))

  • 306 Accesses

Abstract

One of the simplest yet most useful tools in equivariant bifurcation theory is the so called ”Equivariant Branching Lemma” (EBL in the following), as already discussed in the previous chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abers and B. Lee: ”Gauge theories”, Phys. Rep. 9 (1973), 1

    Article  Google Scholar 

  2. V.I. Arnold: ”Geometrical Methods in the Theory of Ordinary Differential Equations”; Springer, Berlin, 1983; ”Equations Differentielles Ordinaires - II ed.”, Mir, Moscow, 1990

    Google Scholar 

  3. V.I. Arnold: ”Contact geometry and wave propagation”, Editions de L’Enseignement Mathematique (Geneva) 1990

    Google Scholar 

  4. G. Birkhoff and S. MacLane: ”Elements of modern algebra”, Macmillan (New York) 1941

    Google Scholar 

  5. G. Cicogna: ”Symmetry breakdown from bifurcation”; Lett. Nuovo Cim. 31 (1981), 600

    Article  MathSciNet  Google Scholar 

  6. G. Cicogna: ”Bifurcation from topology and symmetry arguments”; Boll. U.M.I. 3 (1984), A-131.

    MathSciNet  Google Scholar 

  7. G. Cicogna: ”A nonlinear version of the equivariant bifurcation lemma”; J. Phys. A 23 (1990), L1339

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Cicogna and M. Degiovanni, Nuovo Cimento 82B (1984), 54

    Google Scholar 

  9. G. Cicogna and G. Gaeta: ”Periodic solutions from quaternionic bifurcation”, Lett. Nuovo Cimento 44 (1985), 65. See also G. Cicogna and G. Gaeta, Phys. Lett. A 118 (1986), 303

    Google Scholar 

  10. G. Cicogna and G. Gaeta: ”Hopf - type bifurcation in the presence of multiple critical eigenvalues”, J. Phys. A 20 (1987), L425; ”Quaternionic-like bifurcation in the absence of symmetry”, J. Phys. A 20 (1987), 79

    Google Scholar 

  11. B. Champagne, W. Hereman and P. Winternits: ”The computer calculation of Lie point symmetries of large systems of differential equations”; Preprint CRM-1689 (Montreal) 1990

    Google Scholar 

  12. J.D. Crawford and E. Knobloch: ”Symmetry and symmetry-breaking bifurcations in fluid dynamics”; Ann. Rev. Fluid Mech. 23 (1991), 341

    Article  MathSciNet  Google Scholar 

  13. Dubrovin, S.P. Novikov and A. Fomenko: ”Modern Geometry I & II”, Springer 1984; ”Geometrie Contemporaine I, II & III”, Mir, Moscow, 1982 & 1987

    Google Scholar 

  14. T. Eguchi, P.B. Gilkey and A.J. Hanson: ”Gravitation, gauge theories, and differential geometry”, Phys. Rep. 88 (1980), 213

    Article  MathSciNet  Google Scholar 

  15. C. Ehresmann; ”Les prolongements d’une variete’ differentiable”, I-V; C. R. Acad. Sci. Paris: 233 (1951), 598; 233 (1951), 777; 233 (1951), 1081; 234 (1952), 1028; 234 (1952), 1424; and also C. R. Acad. Sci. Paris: 234 (1952), 587; 239 (1954), 1762; 240 (1955), 397; 240 (1955), 1755; see also ”Les prolongements d’une variete’ differentiable”, Atti del IV congresso dell’Unione Matematica Italiana (1951)

    Google Scholar 

  16. G. Gaeta: ”Bifurcation and symmetry breaking”, Phys. Rep. 189 (1990), 1

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Gaeta: ”Reduction and equivariant branching lemma”; Acta Appl. Math. (1992)

    Google Scholar 

  18. M. Golubitsky: ”The Benard problem, symmetry and the lattice of isotropy subgroups”; in ”Bifurcation theory, mechanics and physics”, C.P. Bruter et al. eds., Reidel (Dordrecht), 1983

    Google Scholar 

  19. M. Golubitsky, I. Stewart and D.G. Schaeffer: ”Singularity and groups in bifurcation theory - vol. II”; Springer (New York) 1988

    Google Scholar 

  20. M. Golubitsky and I. Stewart: ”Hopf bifurcation in the presence of symmetry”; Arch. Rat. Mech. Anal. 87 (1985), 107

    Article  MathSciNet  MATH  Google Scholar 

  21. V. Guillemin and A. Pollack: ”Differential topology”; Prentice Hall (New Jersey), 1974

    Google Scholar 

  22. W. Hereman ”Review of symbolic software for the computation of Lie symmetries of differential equations”; Preprint (1992); to appear in Euromath. Bull. 2 (1993)

    Google Scholar 

  23. M. Hirsch and S. Smale: ”Differential equations, dynamical systems, and linear algebra”; Academic Press (New York) 1978

    Google Scholar 

  24. L. Landau and E. Lifshitz: ”Statistical Mechanics”; Pergamon (London) 1959

    Google Scholar 

  25. L. Michel: ”Points critiques des fonctions invariants sur une G-variete”, C. R. Acad. Sci. Paris A272 (1971),_433

    Google Scholar 

  26. L. Michel: ”Nonlinear group action: smooth actions of compact Lie group on manifolds”; in: ”Sta­tistical Mechanics and field theory”, Sen and Weil eds., Israel University Press, Jerusalem, 1972

    Google Scholar 

  27. J. Milnor: ”Topology from the differential viewpoint”; University of Virginia Press, 1965

    Google Scholar 

  28. P.J. Olver: ”Applications of Lie groups to differential equations”; Springer (Berlin) 1986

    Google Scholar 

  29. R.S. Palais: ”The principle of symmetric criticality”, Comm. Math. Phys. 69 (1979), 19

    Article  MathSciNet  MATH  Google Scholar 

  30. R.S. Palais: ”Applications of the symmetric criticality principle in mathematical physics and differ­ential geometry”, in ”Proceedings of the 1981 Shangai symposium on differential geometry and differential equations”, Gu Chaohao ed., Science Press (Beijing) 1984

    Google Scholar 

  31. D. Ruelle: ”Bifurcations in the presence of a symmetry group”; Arch. Rat. Mech. Anal. 51 (1973), 136

    Article  MathSciNet  MATH  Google Scholar 

  32. D.H. Sattinger: ”Group Theoretic Methods in Bifurcation Theory”, LNM 762, Springer (Berlin) 1979

    Google Scholar 

  33. D.H. Sattinger: ”Branching in the Presence of Symmetry”, S.I.A.M. (Philadelphia) 1984

    Google Scholar 

  34. A. Vanderbauwhede: ”Local bifurcation and symmetry” Research Notes in Mathematics 75 Pitman (Boston) 1982

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gaeta, G. (1994). Reduction and equivariant branching lemma. In: Nonlinear Symmetries and Nonlinear Equations. Mathematics and Its Applications, vol 299. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1018-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1018-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4443-1

  • Online ISBN: 978-94-011-1018-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics