Skip to main content

DNS of a M = 2 Shock Interacting with Isotropic Turbulence

  • Chapter
Direct and Large-Eddy Simulation I

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 26))

Abstract

Direct Numerical Simulation (DNS) and linear analysis of a shock interacting with incompressible and compressible isotropic turbulence is conducted. A dependence of amplification ratios on the degree of compressibility of the incoming flow is found. It can be shown that the enhancement of r.m.s.-values of turbulent quantities across the shock varies according to the ratio of compressible to incompressible kinetic energy χ. Inflow conditions with high values of χ display reduced amplification ratios of TKE and thermodynamic quantities while vorticity fluctuations are enhanced more strongly. The different behaviour of the TKE is due to the reduced pressure diffusion term in the TKE-equation. Experiments show qualitatively a similar behaviour as the simulation with incompressible inflow conditions, but they could so far not confirm our findings of reduced amplification rates in the compressible case, one of the reasons being the lack of knowledge of all flow parameters upstream of the shock front and the inability to generate isotropic turbulence in real life experiments. For the DNS we use a third order in space shock-capturing scheme based on the ENO algorithm of Harten [10] together with an approximate Riemann solver. This non-TVD scheme turned out to have many advantages over other common Godunov-type high resolution schemes for the specific problem of a shock interacting with turbulent fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.P. Debieve and J.P. Lacharme. A Shock-wave/Free Turbulence Interaction. J. Delery(ed.), Springer, 1986.

    Google Scholar 

  2. G. Erlebacher, M.Y. Hussaini, H.O. Kreiss and S. Sarkar. The Analysis and Simulation of Compressible Turbulence. Theor. and Comp. Fluid Dynamics, 2:73–95, 1990.

    ADS  MATH  Google Scholar 

  3. A. Favre. Equations des gaz turbulents compressibles I. J. Mec. 4:361–390, 1965.

    Google Scholar 

  4. R. Friedrich and R. Hannappel. On the interaction of wave-like disturbances with shocks-Two idealizations of the shock/turbulence interaction problem Acta Mechanica, Supplement, 1993.

    Google Scholar 

  5. B. Gorlo. Untersuchung der numerischen Fehler von ENO-Verfahren. Internal Report, TU München, TUM-LSM-91/26, 1991.

    Google Scholar 

  6. R. Hannappel. Untersuchung zur Stabilität und zum Fehlerverhalten verschiedener Zeitintegrationsverfahren der Eulergleichungen Internal Report, TU München, TUM-LSM-91/38, 1991.

    Google Scholar 

  7. R. Hannappel and R. Friedrich. Interaction of Isotropic Turbulence with a Normal Shock Wave Appl. Sci. Res., 51:507–512, 1992.

    Article  Google Scholar 

  8. R. Hannappel, Th. Hauser, and R. Friedrich. A Comparison of ENO and TVD Schemes for the Computation of Shock-Turbulence Interaction. submitted to J. Comp. Phys..

    Google Scholar 

  9. R. Hannappel, Direkte numerische Simulation der Wechselwirkung eines Verdichtungsstoßes mit isotroper Turbulenz. Ph.D. thesis. Lehrstuhl für Fluidmechanik, TU München, München, F.R.G., 1993.

    Google Scholar 

  10. A. Harten, B. Engquist, St. Osher, and Chakravarthy S.R. Uniformly High Order Accurate Essentially Non-oscillatory Schemes, III. J. of Comp. Phys., 71:231–303, 1987.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. A. Harten, J.M. Hyman. Self adjusting Grid Methods for One-dimensional Hyperbolic Conservation Laws. J. of Comp. Phys., 50:235–269, 1983.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. R. Hase, Einfluß der Fernfeldrandbedingungen auf die numerische Lösung der instationären Eulergleichungen für umströmte Körper. Ph.D. thesis. Lehrstuhl für Fluidmechanik, TU München, München, F.R.G., 1993.

    Google Scholar 

  13. R.G. Hindman. On shock capturing methods and Why they work. In AIAA 26th Aerospace Sciences Meeting, Reno, Nevada, 1988

    Google Scholar 

  14. L. Jacquin, E. Blin and P. Geffroy. Experiments on Free Turbulence/Shock Wave Interaction Eighth Symposium on Turbulent Shear Flows, TU München (ed. F. Durst, R. Friedrich, B.E. Launder, F.W. Schmidt, U. Schumann and J.H. Whitelaw), Springer, 1991.

    Google Scholar 

  15. J. Keller and W. Merzkirch. Interaction of a normal shock wave with a compressible turbulent flow. Experiments in Fluids, 8:241–248, 1990.

    Article  ADS  Google Scholar 

  16. S. Lee, P. Moin, and S.K. Lele. Interaction of isotropic turbulence with a shock wave. Technical Report TF-52, Thermosciences Division, Dpt of Mechanical Engineering, Stanford, 1992.

    Google Scholar 

  17. S. Lee, S.K. Lele and P. Moin. Direct numerical simulation of isotropic turbulence interacting with a weak shock wave. J. of Fluid Mech., 251:533–562, 1993

    Article  ADS  Google Scholar 

  18. J.F. McKenzie and K.O. Westphal. Interaction of Linear Waves with Oblique Shock Waves. Phys. of Fluids, 11(11):2350–2362, 1968.

    Article  ADS  MATH  Google Scholar 

  19. H.S. Ribner. Shock-turbulence interaction and the generation of noise. NACA Rpt 1233, 1955.

    Google Scholar 

  20. H. Rochholz. TU München, private communication, 1993.

    Google Scholar 

  21. S. Sarkar, G. Erlebacher and M.Y. Hussaini. Compressible Homogeneous Shear: Simulation and Modeling. ICASE Rep. No. 92-6, 1992.

    Google Scholar 

  22. C.-W. Shu and S. Osher. Efficient Implementation of Essentially Non-oscillatory Shock-Capturing Schemes, II. J. of Comp. Phys., 83:32–78, 1989.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. A.J. Smits and K.C. Muck. Experimental Study of three shock wave/turbulent boundary layer interactions. J. of Fluid Mech., 182:291–314, 1987.

    Article  ADS  Google Scholar 

  24. I. Tavoularis and J. van Osdol. Velocity-derivative skewness in small Reynolds number, nearly isotropic turbulence. J. of Fluid Mech., 176:33–66.

    Google Scholar 

  25. K.W. Thompson. Time Dependent Boundary Conditions for Hyperbolic Systems. J. of Comp. Phys., 68:1–24, 1987.

    Article  ADS  MATH  Google Scholar 

  26. H.C. Yee, G.H. Klopfer and J.-L. Montagne High-Resolution Shock-Capturing Schemes for Inviscid and Viscous Hypersonic Flows. J. Comp. Phys., 88:31–61, 1990.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hannappel, R., Friedrich, R. (1994). DNS of a M = 2 Shock Interacting with Isotropic Turbulence. In: Voke, P.R., Kleiser, L., Chollet, JP. (eds) Direct and Large-Eddy Simulation I. Fluid Mechanics and Its Applications, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1000-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1000-6_31

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4434-9

  • Online ISBN: 978-94-011-1000-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics