Skip to main content

Mechanisms and Models of Boundary Layer Receptivity Deduced from Large-Eddy Simulation of By-pass Transition

  • Chapter

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 26))

Abstract

An analysis has been performed of a large-eddy simulation of a flat-plate boundary layer undergoing by-pass transition due to a high level of free-stream turbulence. Data have been gathered that allow the computation of all terms in the equations for the Reynolds stresses, allowing new insights into the physical mechanisms at work in transiton under turbulence, and suggesting improvements to existing closure models for the process of by-pass transition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kleiser L. and Zang, T.A.: 1991, ‘Numerical Simulation of Transition in Wall-Bounded Shear Flows’. Annu. Rev. Fluid Mech., 23, pp. 495–537.

    Article  ADS  Google Scholar 

  2. Fasel, H., Rist, U., and Konzelmann, U.: 1990, ‘Numerical Investigation of the Three-Dimensional Development in Boundary-Layer Transition’. AIAA J., 28, pp. 29–37.

    Article  MathSciNet  ADS  Google Scholar 

  3. Rai, M.M., and Moin, P.: 1991, ‘Direct Numerical Simulation of Transition and Turbulence in a Spatially Evolving Boundary-Layer’. AIAA-91-1607.

    Google Scholar 

  4. Yang, Z.Y., and Voke, P.R.: 1991, ‘Numerical Simulation of Transition Under Turbulence’. Report ME-FD/91.01, Dept. Mech. Eng., University of Surrey, GU2 5XH, U.K.

    Google Scholar 

  5. Yang, Z.Y., and Voke, P.R.: 1992, ‘Numerical Simulation of Boundary Layer Transition in the Presence of Free Stream Turbulence’, in Numerical Simulation of Unsteady Flows and Transition to Turbulence, ed. O. Pironneau, W. Rodi, I.L. Ryhming, A.M. Savill, and T.V. Truong. C.U.P.: New York. pp. 398–402.

    Google Scholar 

  6. Lilly, D.K.: 1965, ‘On the Computational Stability of Numerical Solutions of Time-Dependent, Non-Linear Geophysical Fluid Dynamics Problems’. Monthly Weather Review, 93, pp. 11–26.

    Article  ADS  Google Scholar 

  7. Bryan, K.: 1966, ‘A Scheme for Numerical Integration of the Equations of Motion on an Irregular Grid Free of Nonlinear Instability’. Monthly Weather Review, 94, pp. 39–40.

    Article  ADS  Google Scholar 

  8. Deardorff, J.W.: 1970, ‘A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers’. J. Fluid Mech., 41, pp. 453–480.

    Article  ADS  MATH  Google Scholar 

  9. Schumann, U.: 1975, ‘Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli’. J. Comput. Phys., 18, pp. 376–401.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Gavrilakis, S.: 1992, ‘Numerical simulation of low-Reynolds-number turbulent flow through a square duct’. J. Fluid Mech. /bf 244, pp. 101–129.

    Article  ADS  Google Scholar 

  11. Savill, A.M.: 1992, ‘A Synthesis of T3 Test Case Predictions’, in Numerical Simulation of Unsteady Flows and Transition to Turbulence, ed. O. Pironneau, W. Rodi, I.L. Ryhming, A.M. Savill, and T.V. Truong. C.U.P.: New York. pp. 404–442.

    Google Scholar 

  12. Savill, A.M.: 1993, ‘Some recent progress in the turbulence modelling of by-pass transition’ in Near-Wall Turbulent Flows, ed. R.M.C. So, C.G. Speziale and B.E. Launder: Elsevier B.V. p. 829

    Google Scholar 

  13. Roach P.E., and Brierley, D.H.: 1992, ‘The Influence of a Turbulent Free-Stream on Zero Pressure Gradient Transitional Boundary Layer Development’, in Numerical Simulation of Unsteady Flows and Transition to Turbulence, ed. O. Pironneau, W. Rodi, I.L. Ryhming, A.M. Savill, and T.V. Truong. C.U.P.: New York. pp. 319–347.

    Google Scholar 

  14. Smagorinsky, J.: 1963,‘General Circulation Experiments with the Primitive Equations: Part I, the Basic Experiment’. Monthly Weather Review, 91, pp. 99–164.

    Article  ADS  Google Scholar 

  15. Voke, P.R. (1990). ‘Multiple Mesh Simulation of Turbulent Flow’. Report QMW EP-1082, QMW, University of London, El 4NS, U.K.

    Google Scholar 

  16. Voke, P.R. and Potamitis, S.G.: 1994, ‘Numerical simulation of a low-Reynolds-number turbulent wake behind a flat plate’. Int. J. Num. Methods Fluids, in press.

    Google Scholar 

  17. Yang, Z.Y. and Voke, P.R.: 1993a, ‘Large-Eddy Simulation of Transition under Turbulence’. Report ME-FD/93.10, Dept. Mech. Eng., University of Surrey, GU2 5XH, U.K.

    Google Scholar 

  18. Yang, Z.Y., and Voke, P.R.: 1993b, ‘Large-eddy simulation studies of bypass transition’, in Engineering Turbulence Modelling and Experiments 2, ed. W. Rodi and F. Martelli. Elsevier Science: Amsterdam. pp. 603–611.

    Google Scholar 

  19. Launder, B.E., and Sharma, B.I.: 1974, ‘Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disk’. Letters in Heat and Mass Transfer, 1, pp. 131–138.

    Article  ADS  Google Scholar 

  20. Lam, C.K.G., and Bremhorst, K.A.: 1981, ‘Modified Form of the k-ε Model for Predicting Wall Turbulence’. J. Fluids Eng., 103, pp. 456–460.

    Article  Google Scholar 

  21. Chien, K-Y.: 1982, ‘Predictions of Channel and Boundary-Layer Flows with a Low Reynolds Number Turbulence Model’. AIAA J., 20, pp. 33–38.

    Article  ADS  MATH  Google Scholar 

  22. Rodi, W., and Mansour, N.N.: 1993, ‘Low Reynolds number k-ε modeling with the aid of direct simulation data’. J. Flui. Mech., 250, pp. 509–529.

    Article  ADS  MATH  Google Scholar 

  23. Kessler, R.: 1993, ‘Near-wall modelling of the dissipation rate equation using DNS data’, in Engineering Turbulence Modelling and Experiments 2, ed. W. Rodi and F. Martelli. Elsevier Science, Amsterdam, pp. 113–122.

    Google Scholar 

  24. Savill, A.M.: 1993, ‘Further progress in the turbulence modelling of by-pass transition’, in Engineering Turbulence Modelling and Experiments 2, ed. W. Rodi and F. Martelli. Elsevier Science, Amsterdam. pp. 583–592.

    Google Scholar 

  25. Voke, P.R., and Yang, Z.Y.: 1993, ‘Numerical studies of the mechanisms of bypass transition in the flat plate boundary layer’. Paper 21-2, Ninth Symp. Turb. Shear Flows, Kyoto, Japan.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yang, Z., Voke, P.R., Savill, A.M. (1994). Mechanisms and Models of Boundary Layer Receptivity Deduced from Large-Eddy Simulation of By-pass Transition. In: Voke, P.R., Kleiser, L., Chollet, JP. (eds) Direct and Large-Eddy Simulation I. Fluid Mechanics and Its Applications, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1000-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1000-6_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4434-9

  • Online ISBN: 978-94-011-1000-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics