Skip to main content

Microstructural Contributions to the Fracture Resistance of Silicon Nitride Ceramics

  • Chapter
Tailoring of Mechanical Properties of Si3N4 Ceramics

Part of the book series: NATO ASI Series ((NSSE,volume 276))

Abstract

To achieve toughening by the crack bridging process the introduction of large elongated grains by fracture resistance is necessary but not sufficient. While increasing the diameter of the elongated grains can increase the toughening effect, this requires that fracture occur along grain interfaces rather than through the grains. This interface debonding process appears to be modified by the chemistry of the oxynitride glass at the grain boundaries. Experiments show that increasing the yttria to alumina ratio or decreasing the ntirogen content of Si-AI-O-N glasses promotes interfacial debonding. The crack bridging contributions to the R-curve behavior is also a function of the content and size of the bridging reinforcement as noted in whisker-reinforced ceramics. Thus, control of micrstructure and interfacial phases is critical to the development of toughened silicon nitiride ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. F. Lange, “Fracture Toughness of Si3N4 as a Function of the Initial α-Phase Content,” J. Am. Ceram. Soc. 62 (7–8) 428–30 (1979).

    Article  CAS  Google Scholar 

  2. G. Himsolt, H. Knoch, H. Huebner, and F. W. Kleinlein, “Mechanical Properties of Hot-Pressed Silicon Nitride with Different Grain Structures,” J. Am. Ceram. Soc., 62(1) 29–32 (1979).

    Article  CAS  Google Scholar 

  3. T. Kawashima, H. Okamoto, H. Yamamoto, and A. Kitamura, “Grain Size Dependence of the Fracture Toughness of Silicon Nitride Ceramics,” J. Ceram. Soc. Japan, 99: 1–4, (1991).

    Article  Google Scholar 

  4. H. Okamoto, H. Yamamoto, and A. Kitamura ibid, “Characteristics of a Variety of Silicon Nitrides Based on Microstructural Control,” pp. 135–46 in Silicon Nitride Ceramics 2, M. Mitomo and S. Somiya (eds), Uchida Rokakuho Publishing Co., Ltd., Tokyo 1990.

    Google Scholar 

  5. M. Mitomo, “Toughening of Silicon Nitride Ceramics by Microstructural Control,” pp. 101–07 in Proc. Sci. Eng’g Ceram., S. Kimura & K. Niihara, eds., Ceram. Soc. Jpn, Tokyo, 1991.

    Google Scholar 

  6. C. W. Li and J. Yamanis, “Super-Tough Silicon Nitride with R-Curve Behavior,” Ceram. Sci. and Engr Proc., 10 (7–8) 632–45 (1989).

    Article  CAS  Google Scholar 

  7. P. F. Becher, “Microstructural Design of Toughened Ceramics,” J. Am. Ceram. Soc. 74(2) 255–69 (1991).

    Article  CAS  Google Scholar 

  8. T. Nose and H. Kubo, “Influence of Grain Morphology of the Sintered Body on the Fracture Toughness of Ceramic Materials,” paper 14-L-90P, Am. Ceram. Soc. 43rd Pacific Coast Region Meeting, Seattle, WA, Oct., 1990.

    Google Scholar 

  9. T. Y. Tien, unpublished results.

    Google Scholar 

  10. A. J. Pyzik, D. F. Carroll, C. J. Hwang, and A. R. Prunier, “Self-Reinforced Silicon Nitride-A New Microengineered Ceramic,” pp. 584–93 in Ceramic Materials and Components for Engines, R. Carlson, T. Johansson, and L. Kahlman (eds.), Elsevier Applied Science, New York, 1992.

    Google Scholar 

  11. P. F. Becher, H. T. Lin, S. L. Hwang, M. J. Hoffman, and I. W. Chen, “The Influence of Microstructure on the Mechanical Behavior of Silicon Nitride,” pp. 147–58 in MRS Proc., Vol. 287: Silicon Nitride Ceramics-Scientific and Technological Advances, I. W. Chen, P. F. Becher, M. Mitomo, G. Petzow, and T. S. Yen (eds), Materials Research Society, Pittsburgh, PA, 1993.

    Google Scholar 

  12. M. J. Hoffmann, private communication.

    Google Scholar 

  13. N. Hirosaki, Y. Akimune, and M. Mitomo, “Effect of Grain Growth of β-Silicon Nitride on Strength, Weibull Modulus, and Fracture Toughness,” J. Am. Ceram. Soc., 76(7) 1892–94 (1993).

    Article  CAS  Google Scholar 

  14. P. F. Becher, E. R. Fuller, Jr., and P. Angelini, “Matrix Grain Bridging in Whisker-Reinforced Ceramics,” J. Am. Ceram. Soc. 74(9) 2131–35 (1991).

    Article  CAS  Google Scholar 

  15. G. Vekinis, M. F. Ashby, and P. W. R. Beaumont, “R-Curve Behavior of AI2O3 Ceramics,” Acta Metall. Mater. 38(6) 1151–62 (1990).

    Article  CAS  Google Scholar 

  16. K. T. Faber and A. G. Evans, “Crack Deflection Processes-I, Theory,” Acta Metall., 31(4)565–76 (1983).

    Article  Google Scholar 

  17. G. Wötting, B. Kanka, and G. Ziegler, “Microstructural Development, Microstructural Characterization and Relation to Mechanical Properties of Dense Silicon Nitride,” pp. 83–96 in Non-Oxide Technical and Engineering Ceramics, S. Hampshire (ed), Elsevier Appl. Sei. Pub. Ltd., London, 1986.

    Chapter  Google Scholar 

  18. M. Kramer, “Untersuchunnen zur Wachstumskinetik von β-Si3N4 in Keramiken und Oxinitridgläsern,” Dissertation, Universität Stuttgart, 1991.

    Google Scholar 

  19. T. Nagaoka, K. Watari, M. Yasuoka, K. Hirao, and S. Kanzaki, “Interrelationship Between Two and/or Three-Dimensional Grain Morphology and Fracture Toughness of Si3N4 Ceramics,” J. Ceram. Soc. Jpn., Int. Edn, 10:1236–40 (1992).

    Google Scholar 

  20. P. Sajgalik and J. Dusza, “Reinforcement of Silicon Nitride Ceramics by β-Si3N4 Whiskers,” J. Eur. Ceram. Soc. 5: 321–6 (1989).

    Article  CAS  Google Scholar 

  21. P. Sajgalik, J. Dusza, and M. J. Hoffmann, “Relationship Between Microstructure, Toughening Mechanisms and Fracture Toughness of Reinforced Si3N4 Ceramics,” submitted for publication.

    Google Scholar 

  22. S. L. Hwang and P. F. Becher, unpublished results.

    Google Scholar 

  23. B. Budiansky, J. W. Hutchinson, and A. G. Evans, “Matrix Fracture in Fiber-Reinforced Ceramics,” J. Mech. Phys. Solids 34(2) 167–89 (1986).

    Article  Google Scholar 

  24. M. Y. He and J. W. Hutchison, “Crack Deflection at an Interface Between Dissimilar Materials,” Int. J. Solids Struct., 25(9) 1053–66 (1989).

    Article  Google Scholar 

  25. A. K. Bhattacharya and J. J. Petrovic, “Indentation Method for Determining the Macroscopic Fracture Energy of Brittle Bimaterial Interfaces,” J. Am. Ceram. Soc., 75(12)413–17(1992).

    Article  CAS  Google Scholar 

  26. Y. Tajima, K. Urashima, M. Watanabe, and Y. Matsuo, “Fracture Toughness and Microstructure Evaluation of Silicon Nitride Ceramics,” pp. 1034–41 in Ceramic Transactions, Vol. 1: Ceramic Powder Science-IIB, G. L. Messing, E. R. Fuller, Jr., and H. Hausner (eds), Am. Ceram. Soc., Westerville, OH, 1988.

    Google Scholar 

  27. Y. Tajima, “Development of High Performance Silicon Nitride Ceramics and Their Application,” pp. 189–96 in ref. 10.

    Google Scholar 

  28. K. Urashima, Y. Tajima, and M. Watanabe, pp. 235-in Fracture Mechanics of Ceramics, Vol. 9, R. C. Bradt, (eds), Plenum Press, New York, 1992.

    Chapter  Google Scholar 

  29. G. Wötting and G. Ziegler, “Influence of Powder Properties and Processing Conditions on Microstructure and Mechanical Properties of Sintered Si3N4,” Ceramics Intl., 10(1) 18–22 (1984).

    Article  Google Scholar 

  30. R. E. Loehman, “Preparation and Properties of Yttrium-Silicon-Aluminum Oxynitride Glasses,” J. Am. Ceram. Soc., 62(9–10) 491–94 (1979).

    Article  CAS  Google Scholar 

  31. D. R. Messier and A. Broz, “Microhardness and Elastic Moduli of Si-Y-AI-O-N Glasses,” J. Am. Ceram. Soc., 65(8), C–123 (1982).

    Article  Google Scholar 

  32. T. Rouxel, J.-L. Besson, C. Gault, and P. Goursat, “Elastic Properties and Crystallization in SiYAION Glasses and Ceramics,” pp. 351–55 in Proc. 1st Europ. Ceram. Soc. Symp., Vol. 3, Elsevier Appl. Sci., London, 1990.

    Google Scholar 

  33. H. Suematsu, J. J. Petrovic and T. E. Mitchell, “Deformation and Toughness of α-Silicon Nitride Single Crystals,” pp. 449–54 in ref. 10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Becher, P.F., Hwang, S.L., Lin, H.T., Tiegs, T.N. (1994). Microstructural Contributions to the Fracture Resistance of Silicon Nitride Ceramics. In: Hoffmann, M.J., Petzow, G. (eds) Tailoring of Mechanical Properties of Si3N4 Ceramics. NATO ASI Series, vol 276. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0992-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0992-5_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4430-1

  • Online ISBN: 978-94-011-0992-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics