Skip to main content

Dynamic Viscosity and Thermal Conductivity Prediction of Environmentally Safe Refrigerants

  • Chapter
Non-CO2 Greenhouse Gases: Why and How to Control?

Abstract

Prediction methods to evaluate liquid dynamic viscosity and thermal conductivity along the saturation line are presented in this paper for pure refrigerants. The viscosity correlation has been improved upon a previous version in order to make it a real predictive method. The thermal conductivity correlation presented here is an extension to the new refrigerants of an equation previously proposed by one of the authors. The accuracy of the two correlations is checked with the most recent experimental data available in literature. The absolute deviations between estimated and experimental data for pure fluids are generally less than 5% (mean) and 10% (maximum) for the thermal conductivity correlation and are generally less than 6% (mean) and 13% (maximum) for viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ASHRAE: (1989). Fundamentals Volume.

    Google Scholar 

  • Baroncini, C, Latini, G., et al.: (1981), ‘Organic Liquid Thermal Conductivity: A Prediction Method in the reduced Temperature Range 0.3 to 0.8’, Int. J. Thermophysics, Vol. 1, No. 1, pp. 21–38.

    Article  Google Scholar 

  • Diller, D. E., Aragon, A. S., and Laesecke, A.: (1991) ‘Measurements of the Viscosities of Saturated and Compressed Liquid R134a, R123 and R141b’ 11th Symposium on Thermppyisical Prop., Boulder.

    Google Scholar 

  • Geller, Z. I., et al.: (1969), Kholodilnaia Tekhnika, Vol. 4, No. 60.

    Google Scholar 

  • Gross, Y., Song, Y. W., Kallweit, J., and Hahne, E.: (1990), ‘Thermal Conductivity of Saturated R123 and R134a — Transient Hot Wire Measurements’, I.I.R. Comm. B1 Meeting, Herzlia, Israel, pp. 103–108.

    Google Scholar 

  • Kumagai, A., and Takahashi, S.: (1991), ‘Viscosity of Saturated Liquid Huorocarbon Refrigerants from 273 to 353 K’, Int. J. Thermophysics, Vol. 12, pp. 105–117.

    Article  Google Scholar 

  • Laesecke, A., et al.: (1992), ‘Thermal Conductivity of R134a’ Fluid Phase Equilibria, Vol. 80, pp. 263–274.

    Article  Google Scholar 

  • Latini, G.: (1989), ‘A Prediction Method for Liquid Dynamic Viscosity’, 10th Japan Symposium on Thermophysical Properties, Sapporo, Japan, pp. 19–22.

    Google Scholar 

  • Latini, G., Laurenti, L., Marcotullio F., and Pierpaoli, P.: (1990), ‘Dynamic Viscosity: A general prediction method with application to refrigerants and refrig. mix.’, Int. J. Refrigeration, Vol. 13, July, pp. 248–255.

    Article  Google Scholar 

  • Phillips, T. W., and Murphy, K. P.: (1970) ‘Liquid Viscosity of Halogenated Refrigerants’, ASHRAE Transactions, Vol. 76 Part II, pp. 146–156.

    Google Scholar 

  • Reid, R. C, et al.: (1987), ‘The Properties of Gases & Liquids’, 4th Ed., McGraw-Hill, New York, pp. 549–550.

    Google Scholar 

  • Ross, M., Trusler, J. P. M., Wakeham, W. A., Zalaf, M.: (1990) ‘Thermal Conductivity of R134a over the Temperature RAnge 240 to 373 K’, I.I.R. Comm. B1 Meeting, Herzlia, Israel, pp. 89–94.

    Google Scholar 

  • Sadykov, A., et al.: (1971), ‘Coefficient of Thermal Conductivity of some Freons of the Methane Series’, Trudy Kazan. Khim. Tekhnol Inst., Vol. 47, pp. 35–39

    Google Scholar 

  • Shankland, I. R., Basu, R. S., and Wilson, D. P.: (1988) ‘Thermal Conductivity and Viscosity of a new Stratosferically Safe Refrigerant — R134a’ Proc. of I.I.R. Meeting, Purdue University, Ind., pp. 305–313.

    Google Scholar 

  • Shankland, I. R.: (1990), ‘Transport Properties of CFC Alternatives’, AIChE Spring Nat. Meeting, Orlando, Fla.

    Google Scholar 

  • Tauscher, W.: (1967), ‘Thermal Conductivity of Liquid Refrigerants Measured by un Unsteady State Hot Wire Method’, Kaltetechnik-Klimatisierung, Vol. 19, No. 9, pp. 288–292

    Google Scholar 

  • Tauscher, W.: (1968), ‘Thermal Conductivity of Liquid Refrigerants Measured by un Unsteady State Hot Wire Method’, Kaltetechnik-Klimatisierung, Vol. 20, No. 9, pp. 287–290.

    Google Scholar 

  • Tsvetkov, O. B.: (1965), ‘Use of the Regular Regime for the Investigation of the Thermal Conductivity of Liquid Freons’, Inzh-fiz. Zf., Vol 9, No. 1, pp. 42–47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Latini, G., Polonara, F. (1994). Dynamic Viscosity and Thermal Conductivity Prediction of Environmentally Safe Refrigerants. In: van Ham, J., Janssen, L.J.H.M., Swart, R.J. (eds) Non-CO2 Greenhouse Gases: Why and How to Control?. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0982-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0982-6_42

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4425-7

  • Online ISBN: 978-94-011-0982-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics