Skip to main content

Pinning and Correlations in the Vortex Phase

Analogies with the Spin-Glass problem

  • Chapter
  • 205 Accesses

Part of the book series: NATO ASI Series ((ASIC,volume 438))

Abstract

We briefly review recent progress in the description of pinned vortex lattices (or other structures). The existence of at least two characteristic length scales is emphasized. Static (geometrical) correlation functions are discussed in connection with experiments. Some aspects of the dynamics of these pinned objects are also discussed: we mention in particular the possibility that non-stationary (aging) effects could occur, as in spin-glasses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Blatter, M. V. Feigel’mann, V. B. Geshkenbin, A. I. Larkin and V.M. Vinokur, “Vortices in High Temperature Superconductors”, ETH preprint (June 1993).

    Google Scholar 

  2. S. Coppersmith, Phys. Rev. Lett. 65, 1044 (1990), Phys. Rev. B 44, 2887 (1991).

    ADS  Google Scholar 

  3. for a review, see H. J. Jensen, in Nato ASI Series, “ Phase transitions and relaxation in systems with competing energy scales”, Geilo 1993.

    Google Scholar 

  4. Known as dynamical strain aging in the context of dislocations.

    Google Scholar 

  5. M. V. Feigel’mann, V. B. Geshkenbin, A. I. Larkin and V.M. Vinokur, Phys. Rev. Lett, 63, 2023 (1989).

    Google Scholar 

  6. Feigelmann’ et al. [5] have proposed a phenomenological form of the ‘reduction factor’ v: vHH = 4/A• [T. Halpin-Healy, Phys. Rev. A 42, 711 (1990)]

    Google Scholar 

  7. M. Mezard, G. Parisi, J. Phys. (Paris) I 1, 809 (1991)

    ADS  Google Scholar 

  8. E. Shaknovich, A. Gutin, J. Phys A 22, 1647 (1989)

    Article  ADS  Google Scholar 

  9. A. Yazdani, W. White, M. Gabay, M. R. Beasley, A. Kapitulnik, Phys. Rev. Lett. 70, 505 (1993)

    Article  ADS  Google Scholar 

  10. D. G. Grier, C.A. Murray, C.A. Bolle, P.L. Gammel, D.J. Bishop, D. B. Mitzi and A. Kapitulnik, Phys. Rev. Lett 66, 2270 (1991)

    Article  ADS  Google Scholar 

  11. R. Shesadri, R.M. Westervelt, Phys. Rev. B 46 5150 (1992)

    Article  ADS  Google Scholar 

  12. J. P. Bouchaud, M. Mezard and J. Yedidia, Phys. Rev. Lett. 67, 3840 (1991) and Phys. Rev. B 46, 14686 (1992)

    Google Scholar 

  13. M. Mezard, G. Parisi, M.A. Virasoro, ‘Spin Glasses and Beyond“, World Scientific, Singapore (1987).

    Google Scholar 

  14. L. Balents, D. S. Fisher, preprint (1993)

    Google Scholar 

  15. We shall assume that the “effective temperature” (i.e the temperature at which the system falls out of equilibrium and is frozen in) is sufficiently small so that the above results, strictly speaking valid at T = 0, still apply.

    Google Scholar 

  16. D. A. Huse, Phys. Rev. B 46 8621 (1992)

    Article  ADS  Google Scholar 

  17. In the regime where dispersion is important, one finds : both the 2 D-3 D crossover and the dispersion of C44 push v towards 1/3.

    Google Scholar 

  18. E. Chudnovski, Phys. Rev. B 43, 7831 (1991)

    Article  ADS  Google Scholar 

  19. C. J. van der Beek, P. Kes, Phys. Rev. B 43, 13032 (1990)

    Article  Google Scholar 

  20. T. Giamarchi, P. Le Doussal, preprint (1993)

    Google Scholar 

  21. S. E. Korshunov, Phys. Rev. B 48, 3969 (1993)

    Article  ADS  Google Scholar 

  22. T. Nattermann, Phys. Rev. Lett. 64, 2454 (1990)

    Article  ADS  Google Scholar 

  23. E. Medina, T. Hwa, M. Kardar, Y.C. Zhang, Phys. Rev. A 39, 3053 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Mezard, J. Physique (Paris) 51, 1831 (1990)

    Article  Google Scholar 

  25. G. Parisi, J. Physique (Paris) 51, 1595 (1990)

    Article  MathSciNet  Google Scholar 

  26. D.S. Fisher, D.A. Huse, Phys. Rev. B, 43, 10728 (1991)

    Article  ADS  Google Scholar 

  27. T. Hwa, D.S. Fisher, preprint (1993)

    Google Scholar 

  28. J.P. Bouchaud, A. Georges, Phys. Rev. Lett. 68, 3908 (1992)

    Article  ADS  Google Scholar 

  29. Note that this length scale can be rather high: due to the large kink energy, dislocations are ‘flat’ over much more than 10 µ m in Si or Ge.

    Google Scholar 

  30. see, for example, P. Nozières, in “Solids Far From Equilibrium”, C. Godrèche Editor, Cambridge University Press (1992).

    Google Scholar 

  31. The features reported here are valid in the limit where the distance between vortices is larger than the layer spacing ao << A c .

    Google Scholar 

  32. D. Nelson, V. Vinokur, Phys. Rev. Lett, 68, 2398 (1992), and preprint (1993)

    Article  ADS  Google Scholar 

  33. L. Balents, M. Kardar, preprint (1993)

    Google Scholar 

  34. A. Schmid, W. Hauger, J. Low. Temp. Phys. 11, 667 (1973)

    Article  ADS  Google Scholar 

  35. A. Larkin, Yu. N. Ovchinnikov, J. Low Temp. Phys. 34, 409 (1979)

    Article  ADS  Google Scholar 

  36. T. Nattermann, H. Leschorn, L.H. Tang, S. Stepanow, J. Phys. II (France) 2, 1483 (1992)

    Article  Google Scholar 

  37. O. Narayan, D. S. Fisher, Phys. Rev. B (to appear)

    Google Scholar 

  38. D. S. Fisher, M.P.A. Fisher, D. A. Huse, Phys Rev B 43, 130 (1991)

    Article  ADS  Google Scholar 

  39. C. Dekker, P. Woltgens, R.H. Koch, B.W. Hussey and A. Gupta, Phys. Rev. Lett. 69, 2717 (1992)

    Article  ADS  Google Scholar 

  40. C.J. van der Beek, P.H. Kes, M.P Maley, M.J.V. Menken and A.A. Menovsky, Physica C 195, 307 (1992)

    Article  ADS  Google Scholar 

  41. In fact, the latter experimental data could be compatible with log V α cst—J α, with α,∼ 0.5, in the whole range of J.

    Google Scholar 

  42. see e.g. J.P. Bouchaud, A. Georges, Phys. Rep. 195, 127 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  43. J. P. Bouchaud, A. Georges, Comments in Cond. Mat. Phys. 15, 125 (1991)

    Google Scholar 

  44. J. P. Bouchaud, J. Physique I 2, 1705 (1992)

    MathSciNet  ADS  Google Scholar 

  45. for a review, see e.g. E. Vincent, J. Hammann, M. Ocio, p. 207 in “Recent Progress in Random Magnets”, D.H. Ryan Editor, (World Scientific Pub. Co. Pte. Ltd, Singapore 1992)

    Google Scholar 

  46. K. Bijlakovic, J. C. Lasjaunias, P. Monceau, F. Levy, Phys. Rev. Lett. 62, 1512 (1989) and 67, 1902 (1991)

    Google Scholar 

  47. L.C.E. Struick, “Physical Aging in Amorphous Polymers and Other Materials” (Elsevier, Houston, 1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bouchaud, J.P. (1994). Pinning and Correlations in the Vortex Phase. In: Bontemps, N., Bruynseraede, Y., Deutscher, G., Kapitulnik, A. (eds) The Vortex State. NATO ASI Series, vol 438. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0974-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0974-1_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4422-6

  • Online ISBN: 978-94-011-0974-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics