Skip to main content

The Multipoint Padé Table and General Recurrences for Rational Interpolation

  • Chapter
Nonlinear Numerical Methods and Rational Approximation II

Part of the book series: Mathematics and Its Applications ((MAIA,volume 296))

Abstract

We first review briefly the Newton-Padé approximation problem and the analogous problem with additional interpolation conditions at infinity, which we call multipoint Padé approximation problem. General recurrence formulas for the Newton-Padé table combine either two pairs of Newton-Padé forms or one such pair and a pair of multipoint Padé forms. We show that, likewise, certain general recurrences for the multipoint Padé table compose two pairs of multipoint Padé forms to get a new pair of multipoint Padé forms. We also discuss the possibility of superfast, i.e.,O(n log2 n) algorithms for certain rational interpolation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. C. Antoulas, On recursiveness and related topics in linear systems, IEEE Trans. Automatic Control, AC-31 (1986), pp. 1121–1135.

    Article  MathSciNet  Google Scholar 

  2. A. C. Antoulas, Rational interpolation and the Euclidean algorithm, Linear Algebra Appl., 108 (1988), pp. 157–171.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. C. Antoulas and B. D. O. Anderson, On the scalar rational interpolation problem, IMA J. Math. Control Inform., 3 (1986), pp. 61–88.

    Article  MATH  Google Scholar 

  4. B. Beckermann, A reliable method for computing M-Padé approximants on arbitrary staircases, J. Comput. Appl. Math., 40 (1992), pp. 19–42.

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Beckermann and G. Labahn, A uniform approach to the fast computation of matrix-type Padé approximants, SIAM J. Matrix Anal. Appl., to appear.

    Google Scholar 

  6. R. P. Brent, F. G. Gustavson, and C. Y. Y. Yun, Fast solution of Toeplitz systems of equations and computation of Padé approximants, J. Algorithms, 1 (1980), pp. 259–295.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Cabay, M. H. Gutknecht, and R. Meleshko, Stable rational interpolation?, in Proceedings MTNS-’93, Regensburg, to appear.

    Google Scholar 

  8. S. Cabay and G. Labahn, A superfast algorithm for multi-dimensional Padé systems, Numerical Algorithms, 2 (1992), pp. 201–224.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Cabay, G. Labahn, and B. Beckermann, On the theory and computation of non-perfect Padé-Hermite approximants, J. Comput. Appl. Math., 39 (1992), pp. 295–313.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Cabay and R. Meleshko, A weakly stable algorithm for Padé approximants and the inversion of Hankel matrices, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 735–765.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Claessens, On the Newton-Padé approximation problem, J. Approx. Theory, 22 (1978), pp. 150–160.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. C. Cooper, A. Magnus, and J. H. Mccabe, On the non-normal two-point Padé table, J. Comput. Appl. Math., 16 (1986), pp. 371–380.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Fiedler, Hankel and Loewner matrices, Linear Algebra Appl., 58 (1984), pp. 75–95.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal, An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Comput., 14 (1993), pp. 137–158.

    MathSciNet  MATH  Google Scholar 

  15. P. A. Fuhrmann, A matrix Euclidean algorithm and matrix continued fractions, System Control Letters, 3 (1983), pp. 263–271.

    Article  MathSciNet  Google Scholar 

  16. P. A. Fuhrmann, On the partial realization problem and the recursive inversion of Hankel and Toeplitz matrices, Contemporary Math., 47 (1985), pp. 149–161.

    Article  MathSciNet  Google Scholar 

  17. M. A. Gallucci and W. B. Jones, Rational approximations corresponding to Newton series (Newton-Padé approximants), J. Approx. Theory, 17 (1976), pp. 366–392.

    Article  MathSciNet  MATH  Google Scholar 

  18. W. Gragg, F. Gustavson, D. Warner, and D. Yun, On fast computation of superdiagonal Padé fractions, Math. Programming Stud., 18 (1982), pp. 39–42.

    Article  MathSciNet  MATH  Google Scholar 

  19. W. B. Gragg, The Padé table and its relation to certain algorithms of numerical analysis, SIAM Rev., 14 (1972), pp. 1–62.

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Graves-Morris, Efficient reliable rational interpolation, in Padé Approximation and its Applications, Amsterdam 1980, M. B. de Bruin and H. van Rossum, eds., vol. 888 of Lecture Notes in Mathematics, Springer-Verlag, 1981, pp. 28–63.

    Google Scholar 

  21. P. R. Graves-Morris, Practical, reliable, rational interpolation, J. Inst. Maths. Applics., 25 (1980), pp. 267–286.

    Article  MathSciNet  MATH  Google Scholar 

  22. P. R. Graves-Morris andT. R. Hopkins, Reliable rational interpolation, Numer. Math., 36 (1981), pp. 111–128.

    MathSciNet  MATH  Google Scholar 

  23. M. H. Gutknecht, Block structure and recursiveness in rational interpolation, in Approximation Theory VII, E. W. Cheney, C. K. Chui, and L. L. Schumaker, eds., Academic Press, Boston, 1992. To appear.

    Google Scholar 

  24. M. H. Gutknecht, A completed theory of the unsymmetric Lanczos process and related algorithms, Part II, SIAM J. Matrix Anal. Appl. To appear.

    Google Scholar 

  25. M. H. Gutknecht, Continued fractions associated with the Newton-Padé table, Numer. Math., 56 (1989), pp. 547–589.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. H. Gutknecht, The rational interpolation problem revisited, Rocky Mountain J. Math., 21 (1991), pp. 263–280.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. H. Gutknecht, A completed theory of the unsymmetric Lanczos process and related algorithms, Part I, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 594–639.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. H. Gutknecht, Stable row recurrences in the Padé table and generically superfast lookahead solvers for non-Hermitian Toeplitz systems, Linear Algebra Appl., 188/189 (1993), pp. 351–421.

    Article  MathSciNet  Google Scholar 

  29. M. H. Gutknecht and M. Hochbruck, Look-ahead Levinson-and Schur-type recurrences in the Padé table, in preparation.

    Google Scholar 

  30. M. H. Gutknecht and M. Hochbruck, Look-ahead Levinson and Schur algorithms for non-Hermitian Toeplitz systems, IPS Research Report 93–11, IPS, ETH-Zürich, August 1993.

    Google Scholar 

  31. G. Heinig and K. Rost, Algebraic Methods for Teoplitz-like Matrices and Operators, Akademie-Verlag, Berlin, DDR, and Birkhäuser, Basel/Stuttgart, 1984.

    Google Scholar 

  32. U. Helmke and P. A. Fuhrmann, Bezoutians, Linear Algebra Appl., 122/123/124 (1989), pp. 1039–1097.

    Article  MathSciNet  Google Scholar 

  33. L. Kronecker, Zur Theorie der Elimination einer Variabel aus zwei algebraischen Gleichungen, Monatsber. Königl. Preuss. Akad. Wiss., (1888), pp. 535–600.

    Google Scholar 

  34. H. Maehly and C. Witzgall, Tschebyscheff-Approximationen in kleinen Intervallen II, Stetigkeitssätze für gebrochen rationale Approximationen, Numer. Math., 2 (1960), pp. 293–307.

    Article  MathSciNet  Google Scholar 

  35. A. Magnus, Certain continued fractions associated with the Padé table, Math. Z., 78 (1962), pp. 361–374.

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Meinguet, On the solubility of the Cauchy Interpolation problem, in Approximation Theory, A. Talbot, ed., Academic Press, 1970, pp. 137–163.

    Google Scholar 

  37. R. J. Meleshko, A stable algorithm for the computation of Padé approximants, PhD thesis, Department of Computing Science, University of Alberta (Canada), 1990.

    Google Scholar 

  38. G. Opitz, Steigungsmatrizen, Z. Ang. Math. Mech., 44 (1964), pp. T52–T54.

    MathSciNet  MATH  Google Scholar 

  39. B. N. Parlett, D. R. Taylor, and Z. A. Liu, A look-ahead Lanczos algorithm for unsymmetric matrices, Math. Comp., 44 (1985), pp. 105–124.

    MathSciNet  MATH  Google Scholar 

  40. M. Van Barel and A. Bultheel, The “look-ahead” philosophy applied to matrix rational interpolation problems, in Proceedings MTNS-’93, Regensburg, to appear.

    Google Scholar 

  41. M. Van Barel and A. Bultheel, A matrix Euclidean algorithm for minimal partial realization, Linear Algebra Appl., 121 (1989), pp. 674–682.

    Google Scholar 

  42. M. Van Barel and A. Bultheel, A new approach to the rational interpolation problem, J. Comput. Appl. Math., 32 (1990), pp. 281–289.

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Van Barel and A. Bultheel, The computation of non-perfect Padé-Hermite approximants, Numerical Algorithms, 1 (1991), pp. 285–304.

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Van Barel and A. Bultheel, A new formal approach to the rational interpolationproblem, Numer. Math., 62 (1992), pp. 87–122.

    Article  MathSciNet  MATH  Google Scholar 

  45. D. D. Warner, Hermite Interpolation with Rational Functions, PhD thesis, University of California at San Diego, 1974.

    Google Scholar 

  46. H. Werner, A reliable method for rational interpolation, in Padé Approximation and its Applications,L. Wuytack, ed., vol. 765 of Lecture Notes in Mathematics, Springer-Verlag, 1979, pp. 257–277.

    Chapter  Google Scholar 

  47. H. Werner, Algorithm 51: A reliable and numerically stable program for rational interpolation in Lagrange data, Computing, 31 (1983), pp. 269–286.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gutknecht, M.H. (1994). The Multipoint Padé Table and General Recurrences for Rational Interpolation. In: Cuyt, A. (eds) Nonlinear Numerical Methods and Rational Approximation II. Mathematics and Its Applications, vol 296. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0970-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0970-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4420-2

  • Online ISBN: 978-94-011-0970-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics