Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 274))

Abstract

The finite element method for free surface flows is described. The topics presented include: the use of elements to discretize the solution domain, shape functions to interpolate values within these elements (with emphasis on linear and quadratic shape functions for one-and two-dimensional problems), application of Galerkin’s method to a simple differential equation, as well as to the Navier-Stokes and continuity equations, integration by parts, coordinate transformations, numerical integration, boundary conditions, solution of non-linear equations, and integrating the unsteady term. These methods are applied to the evaluation of the Galerkin integral for the continuity equation.

A portion of the material of this chapter is taken from Finnie, J.I., “Finite-Element Methods” in Chaudhry, M.H., Open-Channel Flow, 1993, with permission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Autret, A., Grandotto, M., and Dekeyser, I. (1987). “Finite element computation of a turbulent flow over a backward-facing step.” Int. J. Number Methods Fluids. 7, 89–102.

    Article  Google Scholar 

  • Benim, A. C. 1990. “Finite element analysis of confined turbulent swirling flows.” International Journal for Numerical Methods in Fluids. Vol 11, No. 6, pp. 697–718.

    Article  Google Scholar 

  • Carnahan, B., Luther, H. A., and Wilkes, J. O. 1969. Applied Numerical Methods. Wiley, New York.

    Google Scholar 

  • Chapra, S. C., and Canale, R. P. 1988. Numerical Methods for Engineers. (2nd Ed). McGraw-Hill Book Co., New York. 788 p.

    Google Scholar 

  • Chung, T. J. 1978. Finite element analysis in fluid dynamics. McGraw-Hill, New York, New York. 378 p.

    Google Scholar 

  • Devantier, B. A., and Larock, B. E. 1986. “Modeling a recirculating density-driven turbulent flow.” International Journal Numerical Methods Fluids. 6, 241–253.

    Article  Google Scholar 

  • Dhatt, G., Soulaimani, A., Ouellet, Y., and Fortin, M. 1986. “Development of new triangular elements for free surface flows.” International Journal for Numerical Methods in Fluids. Vol. 6, 895–911.

    Article  Google Scholar 

  • FIDAP. 1991. Theoretical Manual. FIDAP User’s Manual. Fluid Dynamics International, Inc. Evanston, Illinois.

    Google Scholar 

  • Finnie, J. I. and Jeppson, R. W. 1991. “Solving Turbulent Flows Using Finite Elements.” Journal of Hydraulic Engineering. American Society of Civil Engineering. Vol. 117, Number 11. p. 1513–1530.

    Article  Google Scholar 

  • Finnie, J. I. 1987. “An application of the finite element method and two equation (k-e) turbulence model to two and three dimensional fluid flow problems governed by the Navier-Stokes equations,” dissertation presented to Utah State University, at Logan, Utah, in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

    Google Scholar 

  • Gresho, P.M., S.T. Chan, R.L. Lee, and CD. Upson. 1984. “A modified finite element method for solving the time-dependent, incompressible Navier-Stokes Equations.

    Google Scholar 

  • Part 1: Theory”. International Journal for Numerical Methods in Fluids. Vol. 6,

    Google Scholar 

  • Gresho, P. M., and R. L. Lee. 1981. Don’t suppress the wiggles-they’re telling you something. Computers and Fluids. 9:223–253.

    Article  Google Scholar 

  • Gresho, P. M., R. L. Lee, and R. L. Sani. 1980. On the time dependent solution of the incompressible Navier-Stokes equations in two and three dimensions. In C. Taylor and K. Morgan (eds.). Recent advances in numerical methods in fluids. Vol. 1. Pineridge Press Limited, Swansea, United Kingdom.

    Google Scholar 

  • Huyakorn, P. S., Taylor, C., Lee, R. L., and Gresho, P. M. 1978. “A comparison of various mixed-interpolation finite elements in the velocity-pressure formulation of the Navier-Stokes equations.” Comput. Fluids. 6, 25.

    Article  Google Scholar 

  • Jackson, C. P. 1984. The effect of the choice of the reference pressure location in numerical modeling of incompressible flow. International Journal for Numerical Methods in Fluids, 4:147–158.

    Article  Google Scholar 

  • Katopodes, N.D. 1984. “A dissipative Galerkin scheme for open channel flow.” Journal of Hydraulic Engineering. ASCE, Vol. 110, No. 4. pp. 450–466.

    Article  Google Scholar 

  • Kim, S. J., and Schetz, J. A. 1989. “Finite element analysis of the flow of a propeller on a slender body with a two-equation turbulence model.” Proc. Seventh International Conference on Finite Element Methods in Flow Problems, 1541–1550.

    Google Scholar 

  • Launder, B. E., and D. B. Spalding. 1972. Mathematical models of turbulence. Academic Press, London, England, p. 169.

    Google Scholar 

  • Lee, J. K. and Froehlich, D. C. 1986. “Review of Literature on the Finite Element Solution of the Equations of Two-Dimensional Surface-Water Flow in the Horizontal Plane.” U.S. Geological Survey Circular: 1009. U. S. Geological Survey, Denver, CO. 60 p.

    Google Scholar 

  • Nallasamy, M. 1985. “A critical evaluation of various turbulence models as applied to internal fluid flows.” NASA Technical Paper 2474, NASA, Springfield, VA.

    Google Scholar 

  • Olson, M. D. 1977. Comparison of various finite element solution methods for the Navier-Stokes equations, p. 4.185 to 4.203. In W. G. Gray, G. F. Pinder, and C. A. Brebbia (eds.). Finite elements in water resources. Proceedings of the First International Conference on Finite Elements in Water Resources, Pentech Press Limited, Plymouth, Devon, England.

    Google Scholar 

  • Polansky, G. F., Lamb, J. P., and Crawford, M. E. 1984. “A finite element analysis of incompressible turbulent backstep flow with heat transfer,” AIAA 2d. Aerospace Sciences Meeting, AIAA Paper No. 84-0178.

    Google Scholar 

  • Rodi, W. 1980. Turbulence models and their applications in hydraulics. International Association for Hydraulic Research, Delft, the Netherlands.

    Google Scholar 

  • Saez, A. E., and Carbonell, R. G. 1985. “On the performance of quadrilateral finite elements in the solution to the Stokes equations in periodic structures.” Int. J. Numer. Methods Fluids. 5, 601–614.

    Article  Google Scholar 

  • Schamber, D. R., and B. E. Larock. 1981. Numerical analysis of flow in sedimentation basins. Journal of the Hydraulics Division. ASCE. 107(HY5):575–591.

    Google Scholar 

  • Segerlind, L. J. 1976 and 1984. Applied Finite Element Analysis. John Wiley and Sons, New York. 399 p.

    Google Scholar 

  • Sharma, M., and Carey, G. F. 1986. “Turbulent boundary-layer analysis using finite elements.” Int. J. Numer. Methods Fluids. 6, 769–787.

    Article  Google Scholar 

  • Smith, R. M. 1984a). “On the finite-element calculation of turbulent flow using the k-ε model.” Int. J. Numer. Methods Fluids. 4, 303–319.

    Article  Google Scholar 

  • Smith, R. M. 1984b. “A practical method of two-equation turbulence modeling using finite elements.” Int. J. Numer. Methods Fluids. 4, 321–336.

    Article  Google Scholar 

  • Spiegel, Murray R. 1968. Mathematical Handbook of Formulas and Tables Schaum’s Outline Series of McGraw-Hill Co., New York. 271 p.

    Google Scholar 

  • Taylor, C, Thomas, C. E., and Morgan, K. 1981. “Modeling flow over a backward-facing step using the F.E.M. and the two-equation model of turbulence.” Int. J. Numer. Methods Fluids. 1, 295–304.

    Article  Google Scholar 

  • Thompson, J. 1990. “Numerical Modeling of Irregular Hydraulic Jumps.” Proceedings of the 1990 National Conference of the Hydraulics Division of ASCE. San Diego, CA. p. 749–754.

    Google Scholar 

  • Zienkiewicz, O. C. and Taylor R. L. 1989. The Finite Element Method. Vol I, (4th Ed.). McGraw-Hill Book Company, London, England. 583 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Finnie, J.I. (1994). Finite-Element Methods for Free-Surface Flow. In: Chaudhry, M.H., Mays, L.W. (eds) Computer Modeling of Free-Surface and Pressurized Flows. NATO ASI Series, vol 274. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0964-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0964-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4417-2

  • Online ISBN: 978-94-011-0964-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics