Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 274))

Abstract

Hydraulic and environmental engineers must evaluate transport, deposition, and erosion of sediment for planning and operating river and canal systems. An alluvial flow is characterized by the inter-dependency of flow, sediment transport, bed form, and friction factor: The flow affects the sediment transport and bed form, which control the hydraulic roughness and channel geometry. The hydraulic roughness and channel geometry, in turn, affect the flow. This interdependency produces major difficulties for analyzing and simulating fluvial flow and associated sediment transport. Thus, a key to successful sediment transport modeling is to correctly reflect this interdependency in a model.

Numerous methods and formulas are available for predicting stage-discharge relationships and calculating sediment discharge in rivers. They are an integral part of sediment transport computer codes. This paper summarizes sediment transport mechanisms, stage-discharge predictors, sediment discharge formulas, and 22 numerical sediment transport models. Furthermore, the paper discusses tests of 10 representative stage-discharge predictors, 23 sediment discharge formulas, and 6 sediment transport computer codes against each other and against measured data. The wide scatter of their predictions clearly demonstrates the lack of understanding of this interdependency, and no single stage-predictor, sediment discharge formula, and flow-sediment routing code can be selected as the best method or model to analyze sediment transport for all conditions. Thus, a user must review many methods and models for their applicabilities and limitations relative to a specific problem, and then select several computer codes mat contain suitable friction factor representations and sediment discharge formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackers, P., and W. R. White. 1973. “Sediment Transport: New Approach and Analysis.” J. Hydr. Div., ASCE, 99(11), 2041–2060.

    Google Scholar 

  • Alam, A. M. Z., and J. F. Kennedy. 1969. “Friction Factors for Flow in Sand Bed Channels,” J. Hydr. Div., ASCE, Vol 95, No. HY6, Proc. Paper 6400, pp. 1973–1992.

    Google Scholar 

  • Ariathurai, R. 1980. “Erosion and Sedimentation Downstream from Harry S. Truman Dam as a Result of Hydropower Operations,” prepared for Corps of Engineers, Kansas City, Missouri, Lafayette, California.

    Google Scholar 

  • Ashida, K., and M. Michiue. 1972. “Study on Hydraulic Resistance and Bedload Transport Rate in Alluvial Streams,” In: Transactions of Japan Society of Civil Engineers. Vol. 206, pp. 59–69.

    Article  Google Scholar 

  • Bagnold, R. A. 1966. “An approach to the sediment transport problem from general physics.” Professional Paper 422–1, U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Bhallamudl, S. M., and M. H. Chaudhry. 1991. “Numerical Modeling of Aggradation and Degradation in Alluvial channels,” In: J. Hydr. Div., ASCE, Vol. 117, No. 9, pp. 1145–1164.

    Article  Google Scholar 

  • Blench, T. 1966. “Mobile-Bed Fluviology,” Department of Technical Services, University of Alberta, Edmonton, Alberta, Canada.

    Google Scholar 

  • Brown, C. B. 1950. “Sediment Transportation.” Engrg Hydr., H. Rouse, ed., John Wiley and Sons, Inc., New York, New York.

    Google Scholar 

  • Brownlie, W. L. 1981a. “Prediction of Flow Depth and Sediment Discharge in open Channels.” Report KH-R-43A, W. M. Keck Laboratory of Hydraulics and Water Resources, California Inst. of Tech., Pasadena, California.

    Google Scholar 

  • Brownlie, W. L. 1981b. “Compilation of Alluvial Channel Data: Laboratory and Field.” Report KH-R-43B, W. M. Keck Laboratory of Hydraulics and Water Resources, California Inst. of Tech., Pasadena, California.

    Google Scholar 

  • Brownlie, W. L. 1983. “Flow Depth in Sand-Bed Channels.” J. Hydr. Engrg., ASCE, 109(7). 959–990.

    Article  Google Scholar 

  • Chang, H. H. 1984. “Modeling of River Channel Change,” In: J. Hydr. Div., ASCE, Vol. 110, No. 2., pp. 157–172.

    Article  Google Scholar 

  • Chen, Y. H. 1988. “Development of a Quasi-Nonequilibrium Reservoir Sedimentation Model: RESSED,” In: Twelve Selected Computer Stream Sedimentation Models Developed in the United States, edited by S-S, Fan, Federal Energy Regulatory Commission, Washington, D. C, pp. 491–510.

    Google Scholar 

  • Colby, B. R. 1964a. “Practical Computation of Bed-Material Discharge,” J. Hydr. Div., ASCE, Vol. 90, No. HY2, Proc. Paper 3843, pp. 217–246.

    Google Scholar 

  • Colby, B. R. 1964b. “Discharge of Sands and Mean Velocity Relationships in Sand-Bed Streams,” Professional Paper 462-A, United States Geological Survey, Washington, D.C.

    Google Scholar 

  • DuBoys, P. 1879. “Le Rohne et les Rivieres a Lit Affouillable,” Annales des Ponts et Chaussees, Series 5, Vol. 18, pp. 141–195.

    Google Scholar 

  • Einstein, H. A. 1950. “The Bed Load Function for Sediment Transportation in Open Channels”, Technical Bulletin 1026, United States Department of Agriculture, Soil Conservation Service, Washington, D.C.

    Google Scholar 

  • Einstein, H. A., and N. Barbarossa. 1952. “River Channel Roughness,” Transactions, ASCE, Vol. 117, Paper No. 2528, pp. 2212–1146.

    Google Scholar 

  • Engelund, F. 1966. “Hydraulic Resistance of Alluvial Streams,” J. Hydr. Div., ASCE, Vol. 92, No. HY2, Proc. Paper 4739, pp. 315–327.

    Google Scholar 

  • Engelund, F., and J. Fredsoe. 1976. “A Sediment Transport Model for Straight Alluvial channels,” Nordic Hydrology, 7, pp. 293–306.

    Google Scholar 

  • Engelund, F., and E. Hansen. 1967. “A Monograph on Sediment Transport in Alluvial Streams”, Teknisk Vorlag, Copenhagen, Denmark.

    Google Scholar 

  • Fan, Shou-Shan, ed. 1988. “Twelve Selected Computer Stream Sedimentation Models Developed in the United States.” Subcommittee on Sedimentation Interagency Advisory Committee on Water Data. Federal Energy Regulatory Commission, Washington, D.C.

    Google Scholar 

  • Garde, R. J., and K. G. R Raju. 1966. “Resistance Relationship for Alluvial Channel Flow,” J. Hydr. Div., ASCE, Vol. 92, No. HY4, Proc. Paper 4869, pp. 77–100.

    Google Scholar 

  • Graf, W. H. 1971. Hydraulics of Sediment Transport, McGraw-Hill Book Co., Inc., New York, New York.

    Google Scholar 

  • Grant, W. D., and O. S. Madsen. 1979. “Combined Wave and Current Interaction with a Rough Bottom.” J. Geophys. Res., Vol. 84, pp. 1797–1808.

    Article  Google Scholar 

  • Hasegawa, K. 1984. “Hydraulic Research on Planimetric Forms, Bed Topographics and How in Alluvial Rivers,” Thesis Presented to Hokkaido University, Japan in Partial Fulfillment of the Requirements for the Degree of Doctor of Engineering (in Japanese).

    Google Scholar 

  • Haynie, R. B., and D. B. Simons. 1968. “Design of Stable Channels in Alluvial Materials,” J. Hydr. Div., ASCE, Vol. 94, No. HY6, Proc. Paper 6217, pp. 1399–1420.

    Google Scholar 

  • Henderson, F. M. 1966. Open Channel Flow. The Macmillan Company, New York, New York.

    Google Scholar 

  • Holley, F. M., J. C. Yang, P. Schwarz, J. Schaefer, S. H. Hsu, and R. Einhellig. 1990. “CHARIMA: Numerical Simulation on Unsteady Water and Sediment Movement in Multiply connected Networks of Mobile-Bed Channels,” IIHR Report No. 343, Iowa Institute of Hydraulic Research, University of Iowa, Iowa City, Iowa.

    Google Scholar 

  • Hydrologic Engineering Center. 1977. “HEC-6 Scour and Deposition in Rivers and Reservoirs.” U.S. Army Corps of Engineering, Davis, California.

    Google Scholar 

  • Hydrologic Engineering Center. 1982. “HEC-2 Water-Surface Profiles Users Manual.” U.S. Army Corps of Engineering, Davis, California.

    Google Scholar 

  • Inglis, C. C. 1968. Discussion of “Systematic Evaluation of River Regime,” by Charles R. Neill and Victor J. Galey, Journal of the Waterways and Harbors Division, ASCE, Vol. 94, No. WWI, Proc. Paper 5774, pp. 109–114.

    Google Scholar 

  • Jain S. C., and I. Park. 1989. “Guide for Estimating River-Bed Degradation,” In: J. Hydr. Div., ASCE, Vol. 115, No. 3, pp. 356–366.

    Article  Google Scholar 

  • Jansen, P. Ph., L. Van Bendegom, J. Van Den Berg, M. De Vries, and A. Zanen (eds.). 1979. Principles of River Engineering-The Non-Tidal Alluvial River. Pitman Publishing Limited, London, San Francisco, Melbourne.

    Google Scholar 

  • Karim, M. F., F. M. Holley, and J. C. Yang. 1987. “ALLUVIAL Numerical Simulation of Mobile-Bed Rivers, Part Theoretical and Numerical Principles, IIHR Report No. 309, Iowa Institute of Hydraulic Research, The University of Iowa, Iowa City, Iowa.

    Google Scholar 

  • Karim, M. F., and J. F. Kennedy. 1981. “Computer-Based Predictors for Sediment Discharge and Friction Factor of Alluvial Streams,” IIHR Report No. 242, Iowa Institute of Hydraulic Research, University of Iowa, Iowa City, Iowa.

    Google Scholar 

  • Kennedy, J. F. 1963. “The Mechanics of Dunes and Antidunes in Erodible-Bed Channels,” Journal of Fluid Mechanics, Vol. 16, Part 4, pp. 521–544.

    Article  Google Scholar 

  • Komar, P. D. 1977. Modeling of Sand Transport on Beaches and the Resulting Shoreline Evolution, in The Sea, Vol. 6, pp. 499–513, John Wiley and Sons, Inc. New York, New York.

    Google Scholar 

  • Krone, R. B. 1962. Flume Studies of the Transport of Sediment in Estuarial Shoaling Processes, Hydraulic Engineering Laboratory and Sanitary Engineering Research Laboratory, University of California at Berkeley, California.

    Google Scholar 

  • Lai, C. 1988. “A Numerical Scale Model for Simulating Unsteady Alluvial-Channel Flow,” In: Twelve Selected Computer Stream Sedimentation Models Developed in the United States,” pp. 179–260, edited by S. S. Fon, Federal Energy Regulatory Commission, Washington, D.C.

    Google Scholar 

  • Lane, E. W. 1947. “Report of the Subcommittee on Sediment Terminology,” Transactions, American Geophysical Union, Vol. 28, No. 6, pp. 936–938, Washington, D.C.

    Google Scholar 

  • Lau, Y. L., and B. G. Krishnappan. 1985. “Sediment Transport Under Ice Cover.” J. Hydr. Engrg., ASCE, 111(6), pp. 934–950.

    Article  Google Scholar 

  • Laursen, E. M. 1958. “The Total Sediment Load of Streams,” J. Hydr. Div., ASCE, Vol. 54, No. HY1, Proc. Paper 1530, pp. 1–36.

    Google Scholar 

  • Leliavsky, Serge. 1966. An Introduction to Fluvial Hydraulics, Dover Publications, Inc., New York, New York.

    Google Scholar 

  • Liang, S. S., and H. Wang. 1973. Sediment Transport in Random Waves, Technical Report No. 26, College of Marine Studies, University of Delaware, Newark, Delaware.

    Google Scholar 

  • Lovera, F., and J. F. Kennedy. 1969. “Friction-Factors for Flat-Bed Flows in Sand Channels,” J. Hydr. Div., ASCE, Vol. 95, No. HY4, Proc. Paper 6678, pp. 1227–1234.

    Google Scholar 

  • Maddock, T., Jr. 1969. “The Behavior of Straight Open Channels with Movable Beds,” Professional Paper 622-A, United States Geological Survey, Washington, D.C.

    Google Scholar 

  • Maddock, T., Jr. 1976. “Equations for Resistance to Flow and Sediment Transport in Alluvial Channels,” In: Water Resources Research, Vol. 12, No. 1, pp. 11–21.

    Article  Google Scholar 

  • Mau, R. E., and N. H. Brooks. 1991. Discussion of “Test of Selected Sediment-Transport Formulas,” by T. Nakato, In: J. Hydr. Div., Vol. 117, No. 9, pp. 1226–1233.

    Article  Google Scholar 

  • McNown, J. S., J. Malaika, and R. Pramanik. 1951. “Particle Shape and Settling Velocity,” Transactions, pp. 511–522, 4th Meeting of the International Association for Hydraulic Research, Bombay, India.

    Google Scholar 

  • Mehta, A. J., E. J. Hayter, W. R. Parker, R. B. Krone, and A. M. Teater. 1989a. “Cohesive Sediment Transport I: Process Description,” In: J. Hydr. Div., ASCE, Vol. 115, No. 8, pp. 1076– 1093.

    Article  Google Scholar 

  • Mehta, A. J., W. H. McArally, Jr., E. J. Hayter, A. M. Teeter, D. Schoellhamer, S. B. Heltzel, and W. P. Carey. 1989b. “Cohesive Sediment Transport II: Application,” In: J. Hydr. Div., ASCE, Vol. 115, pp. 1094–1112.

    Article  Google Scholar 

  • Meyer-Peter, E., and R. Muller. 1948. “Formulas for Bed-Load Transport,” Report on Second Meeting of International Association for Hydraulic Research, pp. 39–64, Stockholm, Sweden.

    Google Scholar 

  • Molinas, A. 1983. Mathematical Simulation of Rivers Based on Stream Line Theory: User’s Manual, Submitted to C. T. Yang, U.S. Bureau of Reclamation, Denver, Colorado.

    Google Scholar 

  • Molinas, A., and C. T. Yang. 1986. “Computer Program User’s Manual for GSTARS (Generalized Stream Tube Model for Alluvial River Simulation),” U.S. Department of the Interior, Bureau of Reclamation, Engineering and Research Center, Denver, Colorado.

    Google Scholar 

  • Mostafa, M. G., and R. M. McDermid. 1971. Discussion of “Sediment Transportation Mechanics: F. Hydraulic Relations for Alluvial Streams,” by the Task Committee for Preparation of Sedimentation Manual, Committee on Sedimentation of the Hydraulics Division, Vito A. Vanoni, Chmn., J. Hydr. Div., ASCE, Vol. 97, No. HY10, Proc. Paper 8407, pp. 1777–1780.

    Google Scholar 

  • Nakato, T. 1987. Discussion of “Modeling of River Channel Changes,” by H. H. Chang, J. Hydr. Engrg., ASCE, 113(2), pp. 262–265.

    Article  Google Scholar 

  • Nakato, T. 1990. “Tests of Selected Sediment-Transport Formulas,” In: J. Hydr. Div., ASCE, Vol. 116, No. 3, pp. 362–379.

    Article  Google Scholar 

  • National Research Council. 1983. An Evaluation of Flood-Level Prediction Using Alluvial-River Models. National Academy Press, Washington, D.C.

    Google Scholar 

  • Nordin, C. F., Jr. 1964. “Aspects of Flow Resistance and Sediment Transport: Rio Grande near Bernalillo, New Mexico,” Water-Supply Paper 1498-H, United States Geological Survey, Washington, D.C.

    Google Scholar 

  • Nordin, C. F., Jr. 1989. “River-Meander Model I: Development,” In: J. Hydr. Div., ASCE, Vol. 115, No. 11, pp. 1433–1450.

    Article  Google Scholar 

  • Norton, W. R., and I. P. King. 1977. “Operating Instruction for the Computer Program RMA-2.” RMA 6290, Resource Management Associates, Lafayette, California.

    Google Scholar 

  • Odgaard, A. J. 1989. “River-Meander Model. I: Development.” J. Hydr. Div., ASCE, Vol. 115, No. 11, pp. 1433–1450.

    Article  Google Scholar 

  • Onishi, Y. 1981. “Sediment and Contaminant Transport Model.” J. Hydr. Div., ASCE, Vol. 18, No. HY9,pp. 1089–1107.

    Google Scholar 

  • Onishi, Y., G. Whelan, and R. L. Skaggs. 1982. Development of a Multi-Medial Radionuclide Exposure Assessment Methodology for Low-Level Waste Management. PNL-3370, Pacific Northwest Laboratory, Richland, Washington.

    Book  Google Scholar 

  • Onishi, Y., D. S. Trent, and A. S. Koontz. 1985. “Three-Dimensional Simulation of Flow and Sewage Effluent Migration in the Strait of Juan De fuca, Washington.” In: Proceedings of the 1985 Specially Conference on Environmental Engineering Division, ASCE, Boston, Massachusetts, July 1–5, 1985, pp. 1006–1013.

    Google Scholar 

  • Onishi, Y., and D. S. Trent. 1985. “Three-Dimensional Simulation of Flow, Salinity, Sediment, Radionuclide Movements in the Hudson River Estuary.” In: Proceedings of the 1985 Specially Conf. Hydr. Div., ASCE, Lake Buena Vista, Florida, August 12–17, 1985, pp. 1095–1100.

    Google Scholar 

  • Onishi, Y., H. C. Graber, and D. S. Trent. 1993. “Preliminary Modeling of Wave-Enhanced Sediment and Contaminant Transport in New Bedford Harbor,” In: Nearshore and Estuorine Cohesive Sediment Transport Edited by A. J. Mehta, American Geophysical Union, pp. 541–557.

    Chapter  Google Scholar 

  • Parker, G., P. C. Klingeman, and V. G. McLean. 1982. “Bed Load and Size Distribution in Paved Gravel-Bed Streams.” J. Hydr. Div., ASCE, Vol. 108, No. HY4, pp. 544–571.

    Google Scholar 

  • Partheniades, E. 1962. “A Study of Erosion and Deposition of Cohesive Soils in Salt Water,” thesis Presented to the University of California at Berkeley, California.

    Google Scholar 

  • Raudkivi, A. J. 1967. Loose Boundary Hydraulics, Pergamon Press, New York, New York.

    Google Scholar 

  • Richards, K. 1982. Rivers-Form and Process in Alluvial Channels, Methuen and Co., Ltd., London and New York.

    Google Scholar 

  • Rijn, L. C. van. 1984a. “Sediment Transport, Part I: Bed Load Transport.” J. Hydr. Engrg., ASCE, 110(10), pp. 1431–1456.

    Article  Google Scholar 

  • Rijn, L. C. van. 1984b. “Sediment Transport, Part II: Suspended Load Transport.” J. Hydr. Engrg., ASCE, 110(11), pp. 1613–1641.

    Article  Google Scholar 

  • Rouse, H. 1937a. “Modern Conceptions of the Mechanics of Fluid Turbulence,” Transactions, ASCE, Vol. 102, Paper No. 1965, pp. 463–543.

    Google Scholar 

  • Rouse, H. 1937b. “Nomogram for the Settling Velocity of Spheres,” Division of Geology and Geography Exhibit D of the Report of the Commission on Sedimentation, 1936–37, pp. 57–64, National Research Council, Washington, D.C.

    Google Scholar 

  • Rouse, H. 1950. Engineering Hydraulics., John Wiley and Sons, Inc., New York, New York.

    Google Scholar 

  • Shen, H. W., and C. S. Hung. 1972. “An Engineering Approach to Total Bed Material Load by Regression Analysis.” Proc. of the Sedimentation Symp., pp. 14–1 –14–17, Berkeley, California.

    Google Scholar 

  • Sheng, Y. P. 1993. “Hydrodynamics, Sediment Transport and Their Efforts on Phosphorus Dynamics in Lake Okeechobee,” In: Nearshore and Estuarine Cohesive Sediment Transport edited by A. J. Mehta, American Geophysical Union, pp. 558–571.

    Chapter  Google Scholar 

  • Shields, A. 1936. “Anwendung der Aenlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung,” Mitteilungen der Preussischen Versuchsanstalt fur Wasserbau und Schiffbau, Berlin, Germany, Translated to English (Application of Similitude Mechanics and the Research on Turbulence to Bed-load Movement.) by W. P. Ott and J. C. van Uchelen, California Institute of Technology, Pasadena, California.

    Google Scholar 

  • Shimizu, Y., and T. Itakura. 1989. “Calculation of Bed Variation in Alluvial Channels,” In: J. Hydr. Div., ASCE, Vol. 115, No. 3, pp. 367–384.

    Article  Google Scholar 

  • Shulits, S. 1935. “The Schoklitsch Bed-Load Formula,” Engineering, London, England, pp. 644–646, 687.

    Google Scholar 

  • Simons, D. B., Y. H. Chen, and V. M. Ponce. 1979. “A Two-Dimensional Water and Sediment Routing Model in River Basins.” Progress Report Prepared for the U.S. Fish and Wildlife Service, Twin Cities, Minnesota, by Department of Civil Engineering Colorado State University, Fort Collins, Colorado.

    Google Scholar 

  • Simons, Li and Associates, Inc. 1980. “Erosion, Sedimentation, and Debris Analysis of Boulder Creek (24th Street Bridge to 30th Street Bridge), Boulder, Colorado.” Fort Collins, Colorado.

    Google Scholar 

  • Simons, D. B., and E. V. Richardson. 1966. “Resistance to Flow in Alluvial Channels,” Professional Paper 422J, United States Geological Survey, Washington, D.C.

    Google Scholar 

  • Simons, D. B., and F. Senturk. 1977. Sediment Transport Technology, Water Resource Publications, Denver, Colorado.

    Google Scholar 

  • Thomas, W. A., and R. E. Heath. 1988. “Application of TABS-2 to Greenville Reach Mississippi River,” In: Twelve Selected Computer Stream Sedimentation Models Developed in the United States,” pp. 65–77, edited by S-5 Fan, Federal Energy Research Commission, Washington, D.C.

    Google Scholar 

  • Toffaleti, F. B. 1969. “Definitive Computations of Sand Discharge in Rivers,” J. Hydr. Div., ASCE, Vol. 95, No. HY1, Proc. Paper 6350, pp. 225–248.

    Google Scholar 

  • Vanoni, V. A., ed. 1975. Sedimentation Engineering, ASCE Manuals and Reports on Engineering Practice, ASCE, New York, New York.

    Google Scholar 

  • Wang, J. D., and J. J. Connor. 1975. “Mathematical Modeling of Near Coastal Circulation,” Report No. 200. Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.

    Google Scholar 

  • White, C. M. 1940. “The Equilibrium of Grains on the Bed of a Stream,” Proceedings, Royal Society of London, Series A, No. 958, Vol. 174, pp. 322–338.

    Google Scholar 

  • Woo, H., and K. Yoo. 1991. Discussion of “Test of Selected Sediment-Transport Formulas.” In: J. Hydr. Div., Vol. 1/7, No. 9, pp. 1233–1235.

    Article  Google Scholar 

  • Yang, C. T. 1973. “Incipient Motion and Sediment Transport.” J. Hydr. Div., ASCE, 99(10), pp. 1679–1704.

    Google Scholar 

  • Yang, C. T. 1979. “Unit Stream Power Equations for Total Load.” J. of Hydr., 40(1/2), 123–138.

    Article  Google Scholar 

  • Yang, C. T., and A. Molinas. 1982. “Sediment Transport and Unit Stream Power Function.” J. Hydr. Div., ASCE, 108(6), pp. 774–793.

    Google Scholar 

  • Znamenskaya, N. S. 1967. “The Analysis of Estimating of Energy Losses by Instantaneous Velocity Distribution of Streams with Movable Bed,” Proceedings, Twelfth Congress of the International Association for Hydraulic Research, Paper No. A4, Vol. 1, pp. 27–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Onishi, Y. (1994). Sediment Transport Models and their Testing. In: Chaudhry, M.H., Mays, L.W. (eds) Computer Modeling of Free-Surface and Pressurized Flows. NATO ASI Series, vol 274. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0964-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0964-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4417-2

  • Online ISBN: 978-94-011-0964-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics