Skip to main content

System Identification by Approximate Realization

  • Chapter
  • 702 Accesses

Abstract

We discuss the use of state variables in time series modelling. Current procedures are mostly based on realization theory. First certain parameters are estimated which describe the process, e.g., the systems impulse response or autocorrelations. These parameters are then transformed into an approximate state space model. In this note we suggest an opposite procedure. First an approximate state trajectory is estimated, and in a second stage a corresponding state space model is determined. This method allows to infer several structural properties of the process from the observed data, in particular the dynamical structure (length of the involved time lags), causality (which variables are inputs and outputs), and the noise (whether it is stochastic or not).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike, H., (1975), ‘Markovian representation of stochastic processes by canonical variables’. SIAM Journal on Control and Optimization, 13, 162–173.

    Article  MathSciNet  MATH  Google Scholar 

  • Akaike, H. (1976), ‘Canonical correlation analysis of time series and the use of an information criterion’, in R.K. Mehra and D.G. Lainiotis (eds.), System Identification and Case Studies, Academic Press, New York, 27–96.

    Google Scholar 

  • Aoki, M. (1987), ‘State Space Modelling of Time Series. Springer’, Berlin.

    Book  Google Scholar 

  • Box, G.E.P., and G.M. Jenkins (1970), ‘Time Series Analysis, Forecasting and Control’, Holden-Day, San Francisco.

    MATH  Google Scholar 

  • Davis, M.H.A., and R.B. Vinter (1985), ‘Stochastic Modelling and Control’, Chapman and Hall, London.

    Book  MATH  Google Scholar 

  • De Moor, B. (1988), ‘Mathematical Concepts and Techniques for Modelling of Static and Dynamic Systems’, Thesis, University of Leuven.

    Google Scholar 

  • Desai, U.B., and D. Pal (1982), ‘A realization approach to stochastic model reduction and balanced stochastic realization’, Proceedings 16th Annual Conference on Information Science and Systems. New Jersey & Princeton.

    Google Scholar 

  • Faurre, P. M. Clerget and F. Germain (1979) ‘Opérateurs Rationnels Positifs’, Dunod, Paris.

    MATH  Google Scholar 

  • Glover, K. (1984), ‘All optimal Hankel norm approximations of linear multivariate systems and their L error bounds’, International Journal of Control, 39, 1115 - 1193.

    Article  MathSciNet  MATH  Google Scholar 

  • Harvey, A.C. (1989), ‘Forecasting, Structural Time Series Models and the Kalman Filter’, Cambridge University Press, Cambridge.

    Google Scholar 

  • Heij, C., T. Kloek and A. Lucas (1992), Positivity conditions for stochastic state space modelling of time series’, Econometric Reviews, 11, 379–396.

    Article  MathSciNet  Google Scholar 

  • Heij, C., and B. Roorda (1991), ‘A modified canonical correlation approach to approximate state space modelling’, Proceedings 30th CDC, IEEE, Brighton, 1343–1348.

    Google Scholar 

  • Kalman, R.E., P.L. Falb and M.A. Arbib (1969), ‘Topics in Mathematical System Theory’, McGraw-Hill, New York.

    MATH  Google Scholar 

  • Lindquist, A., and G. Picci (1985), ‘Realization theory for multivariable statioary gaussian processes’, SIAM Journal on Control and Optimization, 23, 809–857.

    Article  MathSciNet  MATH  Google Scholar 

  • Moore, B.C., (1981), ‘Principal component analysis in linear systems: controllability, observability, and model reduction’, IEEE Transactions on Automatic Control 26, 17 - 32.

    Article  MATH  Google Scholar 

  • Silverman, L.M., (1971), ‘Realization of linear dynamical systems’. IEEE Transactions on Automatic Control 16, 554 - 567.

    Article  Google Scholar 

  • Van der Veen, A.J. (1991), ‘SVD-based estimation of low-rank system parameters’, in F. Deprettere and A.J. van der Veen (eds.), Algorithms and Parallel VLSI Architectures, vol. A., Elsevier, Amsterdam, 203–228.

    Google Scholar 

  • Willems, J.C. (1986), ‘From time series to linear system’, part I: Finite dimensional linear time invariant systems, part II: Exact modelling. Automatica, 22, 561–580, 675–694.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Heij, C. (1994). System Identification by Approximate Realization. In: Grasman, J., van Straten, G. (eds) Predictability and Nonlinear Modelling in Natural Sciences and Economics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0962-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0962-8_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4416-5

  • Online ISBN: 978-94-011-0962-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics