Skip to main content
  • 711 Accesses

Summary

Realistic models for the dynamics of populations of animals or bacteria should minimally account for uptake and use of resources by individuals. In field situations, it is usually necessary to implement also more advanced behaviour, such as interactions between individuals and spatial and temporal inhomogeneities. The dynamics of many heterotrofic systems can be understood by focusing on energy fluxes only, because mass fluxes tend to be closely coupled to them. Realistic and relatively simple descriptions of energy uptake and usage by individuals appeared to be possible for this purpose. Surface area related uptake, volume related maintenance and storage dynamics are the main key elements. These non-specific descriptions distinguish three energy-defined life stages of an animal (embryo, juvenile and adult) and allow the derivation of body size scaling relations of parameter values. Consequent application of the first law of thermodynamics at both the individual and the population level proves to restrict oscillations considerably in comparison with for instance Lotka--Voterra-based population dynamics. The dynamics of populations of energy-structured individuals can to some extent be simplified to a description of the energy uptake and use by the population in terms of that by individuals. These new objects, populations, can be linked into food chains and food webs to explore potential dynamics of ecosystems. Realistic descriptions of a three-step microbial food chain have been obtained. Body size scaling relations can be used to reduce the number of parameters of the system. The specification of ecosystem dynamics then reduces to that of particle size distributions. In this way it proved to be possible to explain for instance, why food chains cannot have many links.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Battley, E.H. (1987), ‘Energetics of microbiol growth’. J. Wiley & Sons, Inc.

    Google Scholar 

  • Battley, E.H. (1993), ‘Calculation of entropy change accompanying growth of Escherichia coli K-12 on succinic acid’. Biotechnol. Bioeng, 41, 422–428.

    Article  Google Scholar 

  • Bazin, M.J., V. Rapa, and P.T. Saunders (1974), ‘The integration of theory and experiment in the study of predator-prey dynamics’. In M. Usher and M. Williamson (Eds.), Ecological stability. London: Chapman & Hall.

    Google Scholar 

  • Bazin, M.J. and P.T. Saunders (1978), ‘Determination of critical variables in a microbial predator-prey system by catastrophe theory’. Nature (Lond.), 275, 52–54.

    Article  Google Scholar 

  • Bazin, M.J. and P.T. Saunders (1979), ‘An application of catastrophe theory to study a switch in Dictyostselium discoideum’. In R. Thomas )Ed.), Kinetic Logic-a Boolean Approach to the Analysis of Complex Regulatory Systems.

    Google Scholar 

  • Berlin: Springer-Verlag. Bedaux, J.J.M. and S.A.L.M. Kooijman (1993a), ‘Hazard-based analysis of bioassays’. J. Environ. Stat. to appear.

    Google Scholar 

  • Bedaux, J.J.M. and S.A.L.M. Kooijman (1993b), ‘Stochasticity in deterministic models’. In C. Rao, G. Patil, and N. Ross (Eds.), Handbook of Statistics 12: Environmental Statistics, volume 12. North Holland.

    Google Scholar 

  • DeAngaelis, D.L. and L.J. Gross, Eds. (1992), ‘Individual-based models and approaches in ecology’. Chapman & Hall.

    Google Scholar 

  • Dent, V.E., M.J. Bazin, and P.T. Saunders (1976), ‘Behaviour of Dictyostelium discoideum amoebae and Escherichia coli grown together in chemostat culture’. Arch. Microbiol., 109, 187–194.

    Article  Google Scholar 

  • Ebenman, B. and L. Persson (1988), ‘Size-structured populations’. Ecology and evolution. Springer-Verlag.

    Google Scholar 

  • Evers, E.G. and S.A.L.M. Kooijman (1989), ‘Feeding and oxygen consumption in Daphnia magna; A study in energy budgets’. Neth. J. Zool., 39, 56–78.

    Article  Google Scholar 

  • Finch, C.E. (1990), ‘Longevity, senescence, and the genome’. Unviersity of Chicago Press.

    Google Scholar 

  • Hallam, T.G., R.R. Lassiter and S.A.L.M. Kooijman (1989), ‘Effects of toxicants on aquatic populations’. In S. Leven, T. Hallam, and L. Gross (Eds.), Mathematical Ecology 352–382. Springer-Verlag.

    Chapter  Google Scholar 

  • Hanegraaf, P.P.F. (1993), ‘Coupling of mass and energy yields in micro-organisms. Application of the Dynamic Energy Budget model and an experimental approach’. PhD. thesis, Vrije Universiteit, Amsterdam. in prep.

    Google Scholar 

  • Haren, R.J.F. van and S.A.L.M. Kooijman (1993), ‘Application of a dynamic energy budget model to Mytilus edulis’. Neth. J. Sea Res., 32. to appear.

    Google Scholar 

  • Harman, D. (1962), ‘Role of free redicals in mutation, cancer, aging and maintenance of life’. Radiat. Res., 16, 752–763.

    Article  Google Scholar 

  • Harman, D. (1981), ‘The aging process’. Proc. Nat. Acad. Sci. U.S.A. 78, 7124–7128.

    Article  Google Scholar 

  • Hastings, A. and T. Powel (1991), ‘Chaos in a three-species food chain’. Ecology. 72, 896–903.

    Article  Google Scholar 

  • Kooi, B.W. and S.A.L.M. Kooijman (1992), ‘Existence and stability of microbial prey-predator systems’. submitted.

    Google Scholar 

  • Kooi, B.W. and S.A.L.M. Kooijman (1993a), ‘Many limiting behaviours in microbial food-chains’. In O. Arino, M. Kimmel, and D. Axelrod (Eds.), Proceedings of the 3rd conference on mathematical population dynamics., Biological Systems: Wuerz. to appear.

    Google Scholar 

  • Kooi, B.W. and S.A.L.M. Kooijman (1993b), ‘A -quantitative -exptanätion for the singular behaviour of myxamoebae’. submitted.

    Google Scholar 

  • Kooijman, S.A.L.M. (1985a), ‘Toxiciteit op populatie niveau’. Vakbl. Biol., 23, 163–185.

    MathSciNet  Google Scholar 

  • Kooijman, S.A.L.M. (1985b), ‘Toxicity at populations level’. In J. Cairns (Ed.) Multispecies toxicity testing 143–164. Pergamon Press.

    Google Scholar 

  • Kooijman, S.A.L.M. (1986a), ‘Energy budgets can explain body size relations’. J. Theor. Biol., 121, 269–282.

    Article  Google Scholar 

  • Kooijman, S.A.L.M. (1986b), ‘Population dynamcis on the basis of budgets’. In J. Metz and O. Diekmann (Eds.), The dynamics of physiologically structured populations, Springer Lecture Notes in Biomathematics, 266–297. Springer-Verlag.

    Google Scholar 

  • Kooijman, S.A.L.M. (1986c), ‘What the hen can tell about her egg; egg development on the basis of budgets’. Bull. Math. Biol., 23 163–185.

    MathSciNet  Google Scholar 

  • Kooijman, S.A.L.M. (1988a), ‘Strategies in ecotoxicological research’. Environ. Asp. Appl. Biol., 17 (1), 11–17.

    Google Scholar 

  • Kooijman, S.A.L.M. (1988b), ‘The von Bertalanffy growth rate as a function of physiological parameters: A comparative analysis’. In T. Hallam, L. Gross, and S. Levin (Eds.), Mathematical ecology 3–45. Singapore: World Scientific.

    Google Scholar 

  • Kooijman, S.A.L.M. (1991), ‘Effects of feeding conditions on toxicity for the purpose of extrapolation’. Comp. Biochem. Physiol., 100C (1/2), 305–310.

    Google Scholar 

  • Kooijman, S.A.L.M. (1992a), ‘Biomass conversion at population level’. In D. DeAngelis and L. Gross (Eds.), Individual based models; an approach to populations and communities 338–358. Chapman & Hall.

    Google Scholar 

  • Kooijman, S.A.L.M. (1992b), ‘Effects of temperature on birds’. In Birds Numbers 1992; 12th internat. conf. of IBCC and EOAC. Noordwijkerhout. to appear.

    Google Scholar 

  • Kooijman, S.A.L.M. (1993), ‘Dynamic Energy Budgets in Biological Systems; Theory and Applications in Ecotoxicology’. Cambridge Unviersity Press.

    Google Scholar 

  • Kooijman, S.A.L.M. and R.J.F. van Haren (1990), ‘Animal energy budgets affect the kinetics of xenobiotics’. Chemosphere, 21, 681–693.

    Article  Google Scholar 

  • Kooijman, S.A.L.M., N. van der Hoeven, and D.C. van der Werf (1989), ‘Population consequences of a physiological model for individuals’. Funct. Ecol., 3, 325–336.

    Article  Google Scholar 

  • Kooijman, S.A.L.M. and J.A.J. Metz (1983), ‘On the dynamics of chemically stressed populations; the deduction of population consequences from effects on individuals’. Ecotox. Environ. Suf., 8, 254–274.

    Article  Google Scholar 

  • Kooijman, S.A.L.M., E.B. Muller, and A.H. Stouthamer (1991), Microbial dynamics on the basis of individual budgets. Antonie van Leeuwenhoek, 60, 159–174.

    Article  Google Scholar 

  • Kot, M., G.S. Sayler, and T.W. Schultz (1992), ‘Complex dynamics in a model microbial system’. Bull. Math. Biol., 54, 619–648.

    MATH  Google Scholar 

  • Ling, G.N. (1984), ‘In search of the physical basis of life’. Plenum Press.

    Google Scholar 

  • Lomnicki, A. (1988), ‘Population ecology of individuals’. Princeton University Press.

    Google Scholar 

  • Metz, J.A.J. and O. Diekmann (1986), ‘The dynamics of physiologically structured populations’, 68, of Lecture Notes in Biomathematics. Springer-Verlag.

    Google Scholar 

  • Metz, J.A.J., O. Diekmann, S.AL.M. Kooijman, and H.J.A.M. Heijmans (1984), ‘Continuum population dynamics, with applications to Daphnia magna’. Nieuw Arch. Wisk., 4, 82–109.

    MathSciNet  Google Scholar 

  • Muller, E.B. (1993), ‘Minimisation of sludge production at the treatment of domestic waste water by membrane retention of activated sludge’. PhD thesis, Vrije Universiteit, Amsterdam. in prep.

    Google Scholar 

  • Ratsak, C.H. (1993), ‘Reduction of activated sludge by protozoa and matazoa’. PhD thesis, Vrije Universiteit, Amsterdam. in prep.

    Google Scholar 

  • Ratsak, C., S.A.L.M. Kooijman, and B.W. Kooi (1992), ‘Modelling the growth of an oligochaete on activated sludge’. Water Res., 27, 739–747.

    Article  Google Scholar 

  • Roos, A. de (1988), ‘Numerical methods for structured population models; The escalator boxcar train’. Num. Meth. Part. Diff. Eq., 4, 173–195.

    Article  MATH  Google Scholar 

  • Saunders, P.T. (1980), ‘An introduction to catastrophe theory’. Cambridge University Press.

    Google Scholar 

  • Stouthamer, A.H. and S.A.L.M. Kooijman (1993), ‘Why it pays for bacteria to delete disused DNA and to maintain megaplasmids’. Anthonie van Leeuwenhoek, 32, 39–43.

    Article  Google Scholar 

  • Tice, R.R. and R.B. Setlow (1985), ‘DNA repair and replication in aging organisms and cells’. In C. Finch and E. Schneider (Eds.), Handbook of the biology of aging. 173–224. New York: Van Nostrand.

    Google Scholar 

  • Visser, J.A.G.M. de, A. ter Maat, and C. Zonneveld (1993), ‘Energy budgets and reproductive allocation in the simultaneous hermaphrodite Lymnaea stagnalis (L.): a trade-off between male and female function’. subm.

    Google Scholar 

  • Zonneveld, C. (1992), ‘Animal energy budgets: a dynamic approach’. PhD thesis, Vrije Universiteit, Amsterdam.

    Google Scholar 

  • Zonneveld, C. and S.A.L.M. Kooijman (1989), ‘The application of a dynamic energy budget model to Lymnaea stagnalis’, Funct. Ecol., 3, 269–278.

    Article  Google Scholar 

  • Zonneveld, C. and S.A.L.M. Kooijman (1993a), ‘Body temperature affects the shape of avian growth curves’. submitted.

    Google Scholar 

  • Zonneveld, C. and S.A.L.M. Kooijman (1993b), ‘Comparative kinetics of embryo development’. Bull. Math. Biol., 55, 609–635.

    MATH  Google Scholar 

  • Zonneveld, C., A. ter Maat, and J.A.G.M. de Visser (1993), ‘Food intake, growth and reproduction as affected by day length and food availability in the pond snail, Lymnaea stagnalis’. submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kooijman, S.A.L.M. (1994). Individual Based Population Modelling. In: Grasman, J., van Straten, G. (eds) Predictability and Nonlinear Modelling in Natural Sciences and Economics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0962-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0962-8_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4416-5

  • Online ISBN: 978-94-011-0962-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics