Skip to main content

Abstract

The application of nonlinear dynamics has begun to move beyond the problem of demonstrating the existence of nonlinearities (and chaos) in biological data. We are starting to see exciting cases where considerations of nonlinear dynamics can explain observed patterns, and give insight into the forces structuring biological phenomena. We present some examples of these, drawn from the analysis of measles epidemics and cardiac pathologies. We show that a phenomenon of many chaotic systems called transient periodicity can explain apparently qualitative shifts in the observed dynamics. Such shifts require no change of or perturbation to the system, but can be intrinsic features of purely deterministic dynamics. We show how the techniques of nonlinear forecasting can be used as analytical tools, both for quantifying the complexity of the time series in a biologically meaningful way and for determining how well a particular model accounts for the dynamics. We also post a warning for practitioners of “conventional” nonlinear time series analysis (such as dimension calculations): many biological time series are nonuniform, and this can seriously mislead the various algorithms in common use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Grassberger, P. and I ~Procaccia (1983), ‘Measuring the strangeness of strange attractors’, Physica D, 9, 189–208.

    Article  MathSciNet  MATH  Google Scholar 

  • Wolf, A., J.B. Swift, H.L. Swinney and J.A. Vastano (1985), ‘Determining Lyapunov exponents from a time series’, Physica D, 16, 285–317.

    Article  MathSciNet  MATH  Google Scholar 

  • Sugihara, G. and R.M. May (1990), ‘Non-linear forecasting as a way of distinguishing chaos from measurement error in time series’, Nature, 344, 734–741.

    Article  Google Scholar 

  • Schaffer, W.M. (1984), ‘Stretching and folding in lynx fur returns: evidence for a strange attractor in nature?’ Am. Nat., 124, 798–820.

    Article  Google Scholar 

  • Babloyantz, A., J.M. Salazar and C. Nicolis (1985), ‘Evidence of chaotic dynamics of brain activity during the sleep cycle’, Phys. Lett. A, 111, 152–156.

    Article  Google Scholar 

  • Markus, M., D. Kuschmitz and B. Hess (1985), ‘Properties of strange attractors in yeast glycolysis’, Biophys. Chem., 22, 95–105.

    Article  Google Scholar 

  • Schaffer, W.M. and M. Kot (1985), ‘Nearly one dimensional dynamics in an epidemic’, J. Theor. Biol., 112, 403–427.

    Article  MathSciNet  Google Scholar 

  • Babloyantz, A. and A. Destexhe (1986), ‘Low-dimensional chaos in an instance of epilepsy’, Proc. Natl. Acad. Sciences USA, 83, 3513–3517.

    Article  Google Scholar 

  • Babloyantz, A. and A. Destexhe (1988), ‘Is the normal heart a periodic oscillator?’ Biol. Cybern., 58, 152–156.

    Article  MathSciNet  Google Scholar 

  • Dvorak, I. and J. Siska (1986), ‘On some problems encountered in the estimation of the correlation dimension of the EEG’, Phys. Lett. A, 118, 63–66.

    Article  Google Scholar 

  • Mayer-Kress, G., F.E. Yates, L. Benton, M. Keidel, W. Tirsch, S.J. Poppi and K.Geist (1988), ‘Dimensional analysis of nonlinear oscillations in brain, heart, and muscle’, Math. Biosciences, 90, 155–182.

    Article  MATH  Google Scholar 

  • Olsen, L.F., G.L. Truty and W.M. Schaffer (1988), ‘Oscillations and chaos in epidemics: A nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark’, Theor. Pop. Biol., 33, 344–370.

    Article  MathSciNet  MATH  Google Scholar 

  • Zbilut, J.P., G. Mayer-Kress and K. Geist (1988), ‘Dimensional analysis of heart rate variability in heart transplant patients’, Math. Biosciences, 90, 49–70.

    Article  MathSciNet  Google Scholar 

  • Frank, G.W., T. Lookman, M.A.H. Nerenberg, C. Essex, J. Lemieux and W. Blume (1990), ‘Chaotic time series analysis of epileptic seizures’, Physica D, 46, 427–438.

    Article  MATH  Google Scholar 

  • Olsen, L.F. and W.M. Schaffer (1990), ‘Chaos \em vs. noisy periodicity: Alternative hypotheses for childhood epidemics’, Science, 249, 499–504.

    Article  Google Scholar 

  • Gallez, D. and A. Babloyantz (1991), ‘Predictability of human EEG: a dynamical approach’, Biol. Cybern., 64, 381–392.

    Article  Google Scholar 

  • Pijn, J.P., J. van Neerven, A. Noest and F.H. Lopes da Silva (1991), ‘Chaos or noise in EEG signals: dependence on state and brain site’, Electroencephalog. Clin. Neurophysiol., 79, 371–381.

    Article  Google Scholar 

  • Sammon, M.P. and E.N. Bruce (1991), ‘Vagal afferent activity increases dynamical dimension of respiration in rats’, J. Appl. Physiol., 70, 1748–1762.

    Google Scholar 

  • Yip, K.P., N.H.H. Rathlou and D.J. Marsh, (1991), ‘Chaos in blood flow control in genetic and renovascular hypertensive rats’, Am. J. Physiol., 261, F400 - F408.

    Google Scholar 

  • Donaldson, G.C. (1992), ‘The chaotic behavior of resting human respiration’, Respiration Physiol., 88, 313–321.

    Article  Google Scholar 

  • Gantert, C., J. Honerkamp and J. Timmer (1992), ‘Analyzing the dynamics of hand tremor time series’, Biol. Cybern., 66, 479–484.

    Article  MATH  Google Scholar 

  • Pritchard, W.S. and D.W. Duke (1992), ‘Dimensional analysis of no-task human EEG using the Grassberger-Procaccia method’, Psychophysiol., 29, 182–192.

    Article  Google Scholar 

  • Oborne, A.R. and A. Provenzale (1989), ‘Finite correlation dimension for stochastic systems with power law spectra’, Physica D, 35, 357–381.

    Article  MathSciNet  Google Scholar 

  • Ellner, S. (1991), ‘Detecting low-dimensional chaos in population dynamics data; a critical review’, In: Chaos and Insect Ecology, Va. Expt. Station Information Ser. 91–3, Blacksburg, Va., pp. 63–90.

    Google Scholar 

  • Stone, L. (1992), ‘Coloured noise or low-dimensional chaos’?’ Proc. R. Soc. Lond. B, 250, 77–81.

    Article  Google Scholar 

  • Aihara, K., G. Matsumoto and M. Ichikawa (1985), ‘An alternating periodic-chaotic sequence observed in neural oscillators’, Phys. Lett. A, 111, 251–255.

    Article  Google Scholar 

  • Hayashi, H., S. Ishizuka and K. Hirakawa (1985), ‘Chaotic response of the pacemaker neuron’, J. Phys. Soc. Jpn., 54, 2337–2346.

    Article  Google Scholar 

  • Chialvo, D.R., R.F. Gilmour and J. Jalife (1990), ‘Low dimensional chaos in cardiac tissue’, Nature, 343, 653–657.

    Article  Google Scholar 

  • Geest, T., C.G. Steinmetz, R. Larter and L.F. Olsen (1992), ‘Period-doubling bifurcations and chaos in an enzyme reaction’, J. Phys. Chem., 96, 5678–5680.

    Article  Google Scholar 

  • Geest, T., C.G. Steinmetz, R. Larter and L.F. Olsen (1992), ‘Period-doubling bifurcations and chaos in an enzyme reaction’, J. Phys. Chem., 96, 5678–5680.

    Article  Google Scholar 

  • Farmer, J.D. and J.J. Sidorowich (1987), ‘Predicting chaotic time series’, Phys. Rev. Lett., 59, 845–848.

    Article  MathSciNet  Google Scholar 

  • Farmer, J.D. and J.J. Sidorowich (1988), ‘Predicting chaotic dynamics’, In: Dynamic Patterns in Complex Systems, World Scientific, Singapore, pp. 265–292.

    Google Scholar 

  • Casdagli, M. (1989), ‘Nonlinear prediction of chaotic time series’, Physica D, 35, 335–356.

    Article  MathSciNet  MATH  Google Scholar 

  • Kantz, H. and P. Grassberger (1985), ‘Repellers, semi-attractors, and long-lived chaotic transients’, Physica D, 17, 75–86.

    Article  MathSciNet  MATH  Google Scholar 

  • Kendall, B.E., W.M. Schaffer and C.W. Tidd (1993), ‘Transient periodicity in chaos’, Phys. Lett. A, 177, 13–20.

    Article  MathSciNet  Google Scholar 

  • Kendall, B.E., W.M. Schaffer and C.W. Tidd (1993), ‘Transient periodicity in chaos’, Phys. Lett. A, 177, 13–20.

    Article  MathSciNet  Google Scholar 

  • Yorke, J.A. and W.P. London (1973), ‘Recurrent outbreaks of measles, chickenpox and mumps. II. Systematic differences in contact rates and stochastic effects’, Am. J. Epidemiol., 98, 469–482.

    Google Scholar 

  • Schwartz, I.B. (1989), ‘Nonlinear dynamics of seasonally driven epidemic models’, In: Biomedical Modelling, J.C. Baltzer AG, pp. 201–204.

    Google Scholar 

  • Dietz, K. and D. Schenzle (1990), ‘Discussion of the paper by Bartlett’, J. R. Statist. Soc. A, 153, 338.

    Google Scholar 

  • Rand, D.A. and H. Wilson (1991), ‘Chaotic stochasticity’, Proc. R. Soc. Lond. B, 246, 179–184.

    Article  Google Scholar 

  • Stollenwerk, N. and F.R. Drepper (1992), ‘Evidence for deterministic chaos in empirical population fluctuations’, preprint.

    Google Scholar 

  • Dietz, K. (1976), ‘The incidence of infectious diseases under the influence of seasonal fluctuations’, Lect. Notes Biomath., 11, 1–15.

    Article  Google Scholar 

  • London, W.P. and J.A. Yorke (1973), ‘Recurrent outbreaks of measles, chickenpox and mumps. I. Seasonal variation in contact rates’, Am. J. Epidemiol., 98, 453–468.

    Google Scholar 

  • Kot, M., D.J. Graser, G.L. Truty, W.M. Schaffer and L.F. Olsen (1988), ‘Changing criteria for imposing order’, Ecol. Model., 43, 75–110.

    Article  Google Scholar 

  • Lorenz, E.N. (1980), ‘Noisy periodicity and reverse bifurcation’, Ann. N. Y. Acad. Sciences, 357, 282–291.

    Article  Google Scholar 

  • Grebogi, C., E. Ott and J.A. Yorke (1983), ‘Crises, sudden changes in chaotic attractors and transient chaos’, Physica D, 7, 181–200.

    Article  MathSciNet  Google Scholar 

  • Engbert, R. and F.R. Drepper (1993), ‘Qualitative analysis of unpredictability: a case study from childhood epidemics’, this volume.

    Google Scholar 

  • Schenzle, D. (1984), ‘An age-structured model of pre-and post-vaccination measles transmission’, IMA J. Math. Appl. Med. Biol. 1, 169–191.

    Article  MathSciNet  MATH  Google Scholar 

  • Bolker, B. (1992), ‘Chaos and complexity in measles models: a comparative numerical study’, preprint.

    Google Scholar 

  • Bolker, B. and B. Grenfell (1992), ‘Chaos and biological complexity in measles dynamics’, preprint.

    Google Scholar 

  • Bolker, B. and B. Grenfell (1992), ‘Chaos and biological complexity in measles dynamics’, preprint.

    Google Scholar 

  • Takens, F. (1981), ‘Detecting strange attractors in turbulence’, In: Dynamical Systems and Turbulence, Springer-Verlag, Berlin, pp. 366–381.

    Chapter  Google Scholar 

  • Goldberger, A.L., L.F. Findley, M.R. Blackburn and A.J. Mandell (1984), ‘Nonlinear dynamics in heart failure: implications of long-wavelength cardiopulminary oscillations’, Am. Heart J., 107, 612–615.

    Article  Google Scholar 

  • Goldberger, A.L., V. Bhargava, B.J. West and A.J. Mandell (1986), ‘Some observations on the question: Is ventricular fibrillation chaos?’ Physica D, 19, 282–289.

    Article  MathSciNet  Google Scholar 

  • Pool, R. (1989), ‘Is it healthy to be chaotic?’ Science, 243, 604–607.

    Article  Google Scholar 

  • Kaplan, D.T. and R.J. Cohen (1990), ‘Is fibrillation chaos?’ Circ. Res., 67, 886–892.

    Article  Google Scholar 

  • Jorgensen, B.L., A. Junker, H. Mickley, M. Moller, E. Christiansen and L.F. Olsen (1993), ‘Nonlinear forecasting of RR-intervals of human electrocardiograms’, In: Future Directions of Nonlinear Dynamics in Physical and Biological Systems, Plenum Press, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kendall, B.E., Schaffer, W.M., Olsen, L.F., Tidd, C.W., Jorgensen, B.L. (1994). Using Chaos to Understand Biological Dynamics. In: Grasman, J., van Straten, G. (eds) Predictability and Nonlinear Modelling in Natural Sciences and Economics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0962-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0962-8_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4416-5

  • Online ISBN: 978-94-011-0962-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics