Skip to main content

Single-bubble sonoluminescence

  • Conference paper
Book cover Bubble Dynamics and Interface Phenomena

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 23))

Abstract

The discovery of single-bubble sonoluminescence [Gaitan and Crum, 1990] has lead to several interesting and remarkable observations [Barber and Putterman, 1991]. Among these are picosecond-length light flashes and a level of syncronicity several orders of magnitude greater than the period of the applied acoustic field. Although new and unique observations concerning this phenomenon are being rapidly reported, an adequate explanation for the physical mechanisms that give rise to single-bubble sonoluminescence has never been given. We present here evidence that this phenomenon arises from nonlinear aspects of bubble dynamics coupled with the process of rectified diffusion. Our results suggest the presence of multiple stability locations that depend upon the driving acoustic pressure and the equilibrium size of the bubble.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barber, B. P. and Putterman, S. J., “Observation of synchronous picosecond sonoluminescence”, Nature 352, 318 (1991).

    Article  ADS  Google Scholar 

  • Barber, B. P., Hiller, R., Arisaka, K., Fettermann, H. and Putterman, S., “Resolving the picosecond characteristics of synchronous sonoluminescence”, J. Acoust. Soc. Am. 91, 3061 (1992).

    Article  ADS  Google Scholar 

  • Barber, B. P. and Putterman, S. J., “Light scattering measurements of the repetitive supersonic implosion of a sonoluminescing bubble”, Phys. Rev. Lett, (in press — preprint).

    Google Scholar 

  • Church, C. C, “Predictions of rectified diffusion during nonlinear bubble pulsations at biomedical frequencies”, J. Acoust. Soc. Am. 83, 2210 (1988).

    Article  ADS  Google Scholar 

  • Crum, L. A., “Measurements of the growth of air bubbles by rectified diffusion”, J. Acoust. Soc. Am. 68, 203 (1980).

    Article  ADS  Google Scholar 

  • Crum, L. A., “The polytropic exponent of gas contained within air bubbles pulsating in a liquid”, J. Acoust. Soc. Am. 73, 116 (1983).

    Article  ADS  Google Scholar 

  • Crum, L. A. and Hansen, G. M., “Generalized equations for rectified diffusion”, J. Acoust. Soc. Am. 72, 1586 (1983).

    Article  ADS  Google Scholar 

  • Crum, L. A. and Prosperetti, A., “Nonlinear oscillations of gas bubbles in liquids: An interpretation of some experimental results”, J. Acoust. Soc. Am. 73, 121 (1983).

    Article  ADS  Google Scholar 

  • Crum, L. A., Daniels, S., Dyson, M., ter Haar, G. and Walton, A. J., “Acoustic cavitation and medical ultrasound”, Proc. Inst. Acoust. 8, 137 (1986).

    Google Scholar 

  • Crum, L. A., Walton, A., Mortimer, A., Dyson, M. and Crawford, D. C, “Free radical production in amniotic fluid and blood plasma by medical ultrasound”, J. Ultrasound Med. 6, 643 (1987).

    Google Scholar 

  • Frenkel, J., Acta Phys-Chim (U. R. S. S. ) 12, 317 (1940).

    Google Scholar 

  • Frenzel, H., and Schultes, H., Z. Phys. Chem. 27B, 421 (1935).

    Google Scholar 

  • Gaitan, D. F., Crum, L. A., and Church, C. C, “A study of the timing of sonoluminescence flashes from stable cavitation ”, J. Acoust. Soc. Am. 84, S36 (1988).

    Article  ADS  Google Scholar 

  • Gaitan, D. F., and Crum, L. A., “Observation of sonoluminescence from a single, stable, cavitation bubble in a water/glycerin mixture”, in Frontiers of Nonlinear Acoustics, 12th ISNA, ed. by M. Hamilton and D. T. Blackstock, (Elsevier App. Sci. : New York)1990, pp. 459–463.

    Google Scholar 

  • Gaitan, D. F., Crum, L. A., Roy, R. A., and Church, C. C, “Sonoluminescence and bubble dynamics from a single, stable, cavitation bubble”, J. Acoust. Soc. Am. 91, 3166 (1992).

    Article  ADS  Google Scholar 

  • Hiller, R., Putterman, S. J. and Barber, B. P., “Spectrum of synchronous picosecond sonoluminescence”, Phys. Rev. Lett. 69, 1182 (1992).

    Article  ADS  Google Scholar 

  • Holt, R. G. and Crum, L. A., “Forced radial oscillations of single cavitation bubbles: A comparison of experimental and numerical results”, J. Acoust. Soc. Am. 82, S12 (1987).

    Article  ADS  Google Scholar 

  • Holt, R. G. and Crum, L. A., “Acoustically forced oscillations of air bubbles in water: Experimental results”, J. Acoust. Soc. Am. 91, 1924 (1992). Horsburg,

    Google Scholar 

  • S., Holt, R. G. and Crum, L. A., “Thresholds for surface wave generation on acoustically levitated gas bubbles”, J. Acoust. Soc. Am. 86, S42 (1989).

    Google Scholar 

  • Kamath, V., Prosperetti, A. and Egolfopoulos, F. N., “A theoretical study of sonoluminescence” , J. Acoust. Soc. Am. 94, 248 (1993).

    Article  ADS  Google Scholar 

  • Lepoint, T., and Mullie, F., “What exactly is cavitation chemistry?”, Ultrasonics (preprintto be published)

    Google Scholar 

  • Levi, B. G., “Light comes from ultrasonic cavitation in picosecond pulses”, Physics Today, November,1991, pp. 17–18.

    Google Scholar 

  • Margulis, M. A., “Fundamental aspects of sonochemistry”, Ultrasonics 30, 152 (1992).

    Article  Google Scholar 

  • Marinesco, N. and Trillat, J. J., C. R. Acad. Sci. 196, 858 (1933).

    Google Scholar 

  • Noltingk, B. E. and Neppiras, E. A., “Cavitation produced by ultrasound”, Proc. Phys., Soc. Lond. B63, 674 (1950).

    ADS  Google Scholar 

  • Strasberg, M. “Onset of ultrasonic cavitation in tap water”, J. Acoust. Soc. Am. 31, 163 (1959).

    Article  ADS  Google Scholar 

  • Suslick, K. S., “The chemical effects of ultrasound”, Sci. mer. 260, 80 (1989).

    Google Scholar 

  • Suslick, K. S. “Sonochemistry”, Science 247, 325 (1990).

    Article  Google Scholar 

  • Watmough, D. J., Shiran, M. B., Quan, K. M., Sarvazyan, A. P., Khizhnyak, E. P. and Pashovkin, T. N., “Evidence that ultrasonically-induced microbubbles carry a negative charge”, Ultrasonics 30, 325 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Crum, L.A., Cordry, S. (1994). Single-bubble sonoluminescence. In: Blake, J.R., Boulton-Stone, J.M., Thomas, N.H. (eds) Bubble Dynamics and Interface Phenomena. Fluid Mechanics and Its Applications, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0938-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0938-3_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4404-2

  • Online ISBN: 978-94-011-0938-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics