Skip to main content

Complex dynamics in higher dimensions

  • Chapter
Complex Potential Theory

Part of the book series: NATO ASI Series ((ASIC,volume 439))

Abstract

The field of complex dynamics in higher dimension was initiated in the 1920’s by Fa-tou. It was motivated by studies in Newton’s method, celestial mechanics and functional equations. Recently, new methods from pluripotential theory have been introduced to the subject. These techniques have produced many new interesting results. We give an introduction to this subject and a summary of the most relevant developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, H., Taylor, B.A., Comparison of two capacities in Cn, Mat. Z. 186 (1984), 407–417.

    Article  MathSciNet  MATH  Google Scholar 

  2. Benedicks, M., Carleson, L., The dynamics of the Hénon map, Ann. of Math. 133 (1991), 73–169.

    Article  MathSciNet  MATH  Google Scholar 

  3. Beardon, A., Iteration of Rational Functions, Springer-Verlag, Berlin-Heidelberg-New York, 1991.

    Book  MATH  Google Scholar 

  4. Bieberbach, L., Beispiel zweier ganzer Funktionen zweier komplexer Variablen, welche eine schlicht volumentreue Abbildung des R 4 auf einen Teil seiner selbst vermitteln, Preuss. Akad. Wiss. Sitzungsber. 14/15 (1933), 476–479.

    Google Scholar 

  5. Bielefeld, B., Conformai Dynamics Problem List, Preprint 1, SUNY Stony Brook, 1990.

    Google Scholar 

  6. Brolin, H., Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103–144.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bedford, E., Smillie, J., Polynomial diffeomorphisms of C2, Invent. Math. 87 (1990), 69–99.

    MathSciNet  Google Scholar 

  8. Bedford, E., Smillie, J., Polynomial diffeomorphisms of C2. II, J. Amer. Math. Soc. 4 (1991), 657–679.

    MathSciNet  MATH  Google Scholar 

  9. Bedford, E., Taylor, B.A., A new capacity for p.s.h. functions, Acta Math. 149 (1982), 1–39.

    Article  MathSciNet  MATH  Google Scholar 

  10. Carleson, L., Gamelin, T., Complex Dynamics, Springer-Verlag, Berlin-Heidelberg-New York, 1993.

    Book  MATH  Google Scholar 

  11. Chirka, E.M., Complex Analytic Sets, Kluwer, Dordrecht, 1989.

    Book  MATH  Google Scholar 

  12. Chern, S.S., Levine, H. and Nirenberg, L., Intrinsic norms on a complex manifold, in: Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, 1969; 119-139.

    Google Scholar 

  13. Demailly, J.-P., Monge-Ampère operators, Lelong numbers, and intersection theory, in: Complex Analysis and Geometry (V. Ancona and A. Silva, eds.). Plenum, New York-London, 1993; 115–193.

    Google Scholar 

  14. Demailly, J.-P., Courants positifs extrémaux et conjecture de Hodge, Invent. Math. 69 (1982), 347–374.

    Article  MathSciNet  MATH  Google Scholar 

  15. Devaney, R.L., An Introduction to Chaotic Dynamical Systems, Addison-Wesley, 1989.

    Google Scholar 

  16. Fatou, P., Sur les équations fonctionnelles, Bull Soc. Math. France 47 (1919), 161–271.

    MathSciNet  MATH  Google Scholar 

  17. Freire, A., Lopez, A. and Mane, R., An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 6 (1983), 45–62.

    Article  Google Scholar 

  18. Friedland, S., Milnor, J., Dynamical properties of plane polynomial automorphisms, Ergodic Theory Dynamical Systems 9 (1989), 67–99.

    Article  MathSciNet  MATH  Google Scholar 

  19. Fornæss, J.E., Sibony, N., Complex Hénon mappings in C2 and Fatou-Bieberbach domains, Duke Math. J. 65 (1992), 345–380.

    Article  MathSciNet  MATH  Google Scholar 

  20. Fornaess, J.E., Sibony, N., Critically finite rational maps on P2, Contemp. Math. 137 (1992), 245–260.

    Article  MathSciNet  Google Scholar 

  21. Fornaess, J.E., Sibony, N., Complex dynamics in higher dimension I, to appear in Astérisque.

    Google Scholar 

  22. Fornaess, J.E., Sibony, N., Complex dynamics in higher dimension II, to appear in Ann. of Math. Studies.

    Google Scholar 

  23. Fornaess, J.E., Sibony, N., Oka’s inequality for currents and applications, to appear in Math. Ann.

    Google Scholar 

  24. Fornaess, J.E., Sibony, N., Classification of recurrent domains for some holomorphic mappings, preprint.

    Google Scholar 

  25. Gavosto, E.A., Attracting basins in P2, preprint.

    Google Scholar 

  26. Green, M., The hyperbolicity of the complement of 2n + 1 hyperplanes in general position in Pn, and related results, Proc. Amer. Math. Soc. 66 (1977), 109–113.

    MathSciNet  MATH  Google Scholar 

  27. Green, M., Some Picard theorems for holomorphic maps to algebraic varieties, Amer. J. Math. 97 (1975), 43–75.

    Article  MathSciNet  MATH  Google Scholar 

  28. Harvey, R., Polking, J., Extending analytic objects, Comm. Pure Appl. Math. 28 (1975), 701–727.

    Article  MathSciNet  MATH  Google Scholar 

  29. Hörmander, L., The Analysis of Linear Partial Differential Operators, vol.1., Springer-Verlag, Berlin-Heidelberg-New York, 1983.

    Book  Google Scholar 

  30. Hubbard, J., Oberste-Vorth, W., Hénon mappings in the complex domain I. The global topology of dynamical space, preprint.

    Google Scholar 

  31. Hubbard, J.H., Papadopol, P., Superattractive fixed points in Cn, preprint.

    Google Scholar 

  32. Hubbard, J.H., The Hénon mapping in the complex domain, in: Chaotic Dynamics and Fractals (M.F. Barnsley and S.G. Demko, eds.), Academic Press, New York, 1986; 101–111.

    Google Scholar 

  33. Klimek, M.K., Pluripotential Theory, Oxford Univ. Press, 1991.

    Google Scholar 

  34. Kobayashi, S., Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970.

    MATH  Google Scholar 

  35. Lang, S., Introduction to Complex Hyperbolic Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1987.

    MATH  Google Scholar 

  36. Lelong, P., Fonctions plurisousharmoniques et formes différentielles positives, Gordon & Breach, Dunod, Paris, Londres, New York, 1968.

    MATH  Google Scholar 

  37. Lelong, P., Gruman, L., Entire Functions of Several Complex Variables, Springer-Verlag, Berlin-Heidelberg-New York, 1986.

    Book  MATH  Google Scholar 

  38. Lyubich, M., Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynamical Systems 3 (1983), 351–385.

    MathSciNet  MATH  Google Scholar 

  39. Milnor, J., Dynamics in One Complex Variable: Introductory Lecture, Institute for Mathematical Sciences, SUNY Stony Brook, 1990.

    Google Scholar 

  40. Milnor, J., Notes on complex dynamics, preprint, SUNY Stony Brook.

    Google Scholar 

  41. Mañé, R., Sad P. and Sullivan, D., On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4) 16 (1982), 193–217.

    Google Scholar 

  42. de Rham, G., Variétés differentiates, Hermann, Paris, 1955.

    Google Scholar 

  43. Rosay, J.-P., Rudin, W., Holomorphic maps from Cn to Cn, Trans. Amer. Math. Soc. 10 (1988), 47–86.

    MathSciNet  Google Scholar 

  44. Ruelle, D., Elements of Differentiable Dynamics and Bifurcation Theory, Academic Press, New York, 1989.

    MATH  Google Scholar 

  45. Schröder, E., Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen, Math. Ann. 2 (1870), 317–365.

    Article  MathSciNet  MATH  Google Scholar 

  46. Schröder, E., Ueber iterierte Functionen, Math. Ann. 3 (1871), 296–322.

    Article  MATH  Google Scholar 

  47. Schwartz, L., Théorie des distributions, Hermann, Paris, 1966. [Si] Sibony, N., Unpublished manuscript, course at UCLA, 1984.

    Google Scholar 

  48. Siu, Y.T., Analyticity of sets associated to Lelong numbers and extension of closed positive currents, Invent. Math. 27 (1974), 53–156.

    Article  MathSciNet  MATH  Google Scholar 

  49. Skoda, H., Prolongement des courants positifs, fermés, de masse finie, Invent. Math. 66 (1982), 361–376.

    Article  MathSciNet  MATH  Google Scholar 

  50. Tortrat, P., Aspects potentialistes de l’itération des polynômes, in: Séminaire de Théorie du Potentiel Paris, No. 8, Lecture Notes in Math. 1235, Springer-Verlag, Berlin-Heidelberg-New York, 1987; 195–209.

    Google Scholar 

  51. Takeuchi, A., Domaines pseudoconvexes infinis et la métrique riemannienne dans un espace projectif, J. Math. Soc. Japan 16 (1964), 159–181.

    Article  MathSciNet  MATH  Google Scholar 

  52. Tsuji, M., Potential Theory in Modem Function Theory, Mazuren, Tokyo, 1959.

    Google Scholar 

  53. Ueda, T., Fatou set in complex dynamics in projective spaces, preprint.

    Google Scholar 

  54. Walters, P., An Introduction to Ergodic Theory, Springer-Verlag, Berlin-Heidelberg-New York, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fornæss, J.E., Sibony, N. (1994). Complex dynamics in higher dimensions. In: Gauthier, P.M., Sabidussi, G. (eds) Complex Potential Theory. NATO ASI Series, vol 439. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0934-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0934-5_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4403-5

  • Online ISBN: 978-94-011-0934-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics