Skip to main content

Removability, capacity and approximation

  • Chapter
Complex Potential Theory

Part of the book series: NATO ASI Series ((ASIC,volume 439))

Abstract

In this paper we are primarily interested in problems of qualitative approximation by holomorphic functions of one complex variable belonging to some fixed class, that is defined by restricting the growth of the functions (L p, 1 < p ≤ ∞) or by requiring certain smoothness (Lip s or C m). Part of the approximation problem consists in understanding the removable sets for the class under consideration and its associated capacity.

In Chapter 1 we deal with bounded analytic functions. We are thus led to the Painlevé problem and analytic capacity. We discuss the solution of the Denjoy conjecture via L 2-estimates for the Cauchy integral on Lipschitz graphs. We then show that the same ideas can be applied to describe removable sets for Lipschitz analytic functions, the role of the Cauchy integral being played by the Beurling transform.

Chapter 2 is devoted to Vitushkin’s Theorem on uniform approximation by rational functions; the simplest available proof is described in detail.

In Chapter 3, problems of approximation by analytic functions in Lipschitz and C m classes are considered. Vitushkin’s scheme and the mapping properties of the Beurling transform are combined to obtain satisfactory answers to the main questions.

In Chapter 4 we discuss the relationship between L p-approximation by analytic functions and spectral synthesis for Sobolev spaces.

Chapter 5 is a survey of recent results about approximation by solutions of elliptic equations in classical Banach spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlfors, L., Bounded analytic functions, Duke Math. J. 14 (1947), 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bagby, T., Quasi topologies and rational approximation, J. Funct. Anal. 10 (1972), 259–268.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bagby, T., Approximation in the mean by solutions of elliptic equations, Trans. Amer. Math. Soc. 281 (1984), 761–784.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bagby, T. and Gauthier, P., An arc of finite 2-measure that is not rationally convex, Proc. Amer. Math. Soc. 114 (1992), 1033–1034.

    MathSciNet  MATH  Google Scholar 

  5. Boivin, A. and Verdera, J., Approximation par fonctions holomorphes dans les espaces L p, Lip α et BMO, Indiana Univ. Math. J. 40 (1991), 393–418.

    Article  MathSciNet  MATH  Google Scholar 

  6. Browder, A., Rational Approximation and Function Algebras, Benjamin, New York, 1969.

    Google Scholar 

  7. Calderòn, A.P., Cauchy integrals on Lipschitz curves and related operators, Proc. Nat. Acad. Sci. USA 74 (1977), 1324–1327.

    Article  MATH  Google Scholar 

  8. Carmona, J.J., Mergelyan’s approximation theorem for rational modules, J. Ap-prox. Theory 44 (1985), 113–125.

    MathSciNet  MATH  Google Scholar 

  9. Christ, M., Lectures on Singular Integral Operators, CBMS Regional Conf. Ser. in Math. 77, Amer. Math. Soc., Providence, RI, 1990.

    Google Scholar 

  10. Coifman, R.R., Jones, P.W. and Semmes, S., Two elementary proofs of the L 2 boundedness of the Cauchy integral on Lipschitz curves, J. Amer. Math. Soc. 2 (1989), 553–564.

    MathSciNet  MATH  Google Scholar 

  11. Coifman, R.R., Mclntosh, A. and Meyer, Y., L’integral de Cauchy définit un opérateur borné sur L 2 pour les courbes lipschitziennes, Ann. of Math. 115 (1982), 361–387.

    Article  Google Scholar 

  12. David, G., Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. École Norm. Sup. 17 (1984), 157–189.

    MATH  Google Scholar 

  13. David, G. and Semmes, S., Analysis of and on Uniformly Rectifiable Sets, book to appear.

    Google Scholar 

  14. Davie, A.M., Analytic capacity and approximation problems, Trans. Amer. Math. Soc. 171 (1972), 409–444.

    Article  MathSciNet  MATH  Google Scholar 

  15. Davie, A.M., An example on rational approximation, Bull. London Math. Soc. 2 (1970), 83–86.

    Article  MathSciNet  MATH  Google Scholar 

  16. Davie, A.M. and Øksendal, B., Analytic capacity and differentiability properties of finely harmonic functions, Acta. Math. 149 (1982), 127–152.

    Article  MathSciNet  MATH  Google Scholar 

  17. Denjoy, A., Sur les fonctions analytiques uniformes à singularités discontinues, CR. Acad. Sci. Paris 149 (1909), 258–260.

    Google Scholar 

  18. Deny, J., Systèmes totaux de fonctions harmoniques, Ann. Inst. Fourier (Grenoble) 1 (1949), 103–113.

    Article  MathSciNet  Google Scholar 

  19. Gamelin, T.W., Uniform Algebras, Prentice-Hall, Englewood Cliffs, NJ, 1969.

    MATH  Google Scholar 

  20. Garnett, J.B., Analytic Capacity and Measure, Lecture Notes in Math. 297, Springer-Verlag, Berlin and New York, 1972.

    Google Scholar 

  21. Gauthier, P. and Tarkhanov, N., Degenerate cases of uniform approximation by solutions of systems with surjective symbols, Canad. J. Math. 45 (1993), 740–757.

    Article  MathSciNet  MATH  Google Scholar 

  22. Havin, V.P., Approximations in the mean by analytic functions, Soviet Math. Dokl. 9 (1968), 245–248.

    Google Scholar 

  23. Havin, V.P. and Maz’ja, V.G., Nonlinear potential theory, Russian Math. Surveys 27 (1972), 71–148.

    MathSciNet  Google Scholar 

  24. Hedberg, L.I., Approximation in the mean by analytic functions, Trans. Amer. Math. Soc. 153 (1972), 157–171.

    Article  MathSciNet  Google Scholar 

  25. Hedberg, L.I., Non-linear potentials and approximation in the mean by analytic functions, Math. Z. 129 (1972), 299–319.

    Article  MathSciNet  MATH  Google Scholar 

  26. Hedberg, L.I., Two approximation problems in function spaces, Ark. Mat. 16 (1978), 51–81.

    Article  MathSciNet  MATH  Google Scholar 

  27. Hedberg, L.I., Approximation by harmonic functions, and stability of the Dirich-let problem, Exposition. Math. 11 (1993), 193–259.

    MathSciNet  MATH  Google Scholar 

  28. Hedberg, L.I. and Wolff, T.H., Thin sets in non-linear potential theory, Ann. Inst. Fourier (Grenoble) 33 (1983), 161–187.

    Article  MathSciNet  MATH  Google Scholar 

  29. Jones, P.W. and Murai, T., Positive analytic capacity but zero Buffon needle probability, Pacific J. Math. 133 (1988), 99–114.

    MathSciNet  MATH  Google Scholar 

  30. Keldysh, M.V., On the solvability and stability of the Dirichlet problem, Uspekhi Mat. Nauk 8 (1941), 171–231 (Russian); English translation: Amer. Math. Soc. Transl. 51 (1966), 1-73.

    Google Scholar 

  31. Korevaar, J., Polynomial and rational approximation in the complex domain, in: Aspects of Contemporary Complex Analysis (D.A. Brannan and J.G. Clunie, eds.), Academic Press, London, 1980; 251–292.

    Google Scholar 

  32. Labrèche, M., De l’approximation harmonique uniforme, Thèse de doctorat, Université de Montréal, 1982.

    Google Scholar 

  33. Lindberg, P., A constructive method for L p approximation by analytic functions, Ark. Mat. 20 (1982), 61–68.

    Article  MathSciNet  MATH  Google Scholar 

  34. Marshall, D.E., Removable sets for bounded analytic functions, in: Linear and Complex Analysis Problem Book (V.P. Havin et al., eds.), Lecture Notes in Math. 1043, Springer-Verlag, Berlin and New York, 1984; 485–490.

    Google Scholar 

  35. Mateu, J., An example on L p approximation by harmonic functions, in preparation.

    Google Scholar 

  36. Mateu, J. and Orobitg, J., Lipschitz approximation by harmonic functions and some applications to spectral synthesis, Indiana Univ. Math. J. 39 (1990), 703–736.

    Article  MathSciNet  MATH  Google Scholar 

  37. Mateu, J. and Verdera, J., BMO harmonic approximation in the plane and spectral synthesis for Hardy-Sobolev spaces, Rev. Mat. Iberoamericana 4 (1988), 291–318.

    Article  MathSciNet  MATH  Google Scholar 

  38. Mattila, P., Smooth maps, null-sets for integralgeometric measure and analytic capacity, Ann. of Math. 123 (1986), 303–309.

    Article  MathSciNet  MATH  Google Scholar 

  39. Mattila, P. and Melnikov, M., Existence and weak type inequalities for Cauchy integrals of general measures on rectifiable curves and sets, to appear in Proc. Amer. Math. Soc.

    Google Scholar 

  40. Mattila, P. and Orobitg, J., On some properties of Hausdorff content related to instability, to appear in Ann. Acac. Sci. Fenn. Ser. AI Math. 19 (1994).

    Google Scholar 

  41. Melnikov, M., A bound for the Cauchy integral along an analytic curve, Mat. Sb. 71(113) (1966), 503–515.

    MathSciNet  Google Scholar 

  42. Melnikov, P., personal communication.

    Google Scholar 

  43. Meyers, N.G., A theory of capacities for functions in Lebesgue classes, Math. Scand. 26 (1970), 255–292.

    MathSciNet  MATH  Google Scholar 

  44. Murai, T., Comparison between analytic capacity and the Buffon needle probability, Trans. Amer. Math. Soc. 304 (1987), 501–514.

    Article  MathSciNet  MATH  Google Scholar 

  45. Murai, T., The power 3/2 appearing in the estimate of analytic capacity, Pacific J. Math. 143 (1990), 313–340.

    MathSciNet  MATH  Google Scholar 

  46. Netrusov, Y.V., Spectral synthesis in spaces of smooth functions, Soviet Math. Dokl. 46 (1993), 135–138.

    MathSciNet  Google Scholar 

  47. O’Farrell, A.G., Hausdorff content and rational approximation in fractional Lip-schitz norms, Trans. Amer. Math. Soc. 228 (1977), 187–206.

    MathSciNet  MATH  Google Scholar 

  48. O’Farrell, A.G., Lip 1 rational approximation, J. London Math. Soc. 11 (1975), 159–164.

    Article  MathSciNet  MATH  Google Scholar 

  49. O’Farrell, A.G., Localness of certain Banach modules, Indiana Univ. Math. J. 24 (1975), 1135–1141.

    Article  MathSciNet  MATH  Google Scholar 

  50. O’Farrell, A.G., Rational approximation in Lipschitz norms II, Proc. Roy. Irish Acad. Sect A 79 (1979), 103–114.

    MathSciNet  MATH  Google Scholar 

  51. O’Farrell, A.G., Qualitative rational approximation on plane compacta, in: Banach Spaces, Harmonic Analysis and Probability Theory (R.C. Blei and S.J. Sidney, eds.), Lecture Notes in Math. 995, Springer-Verlag, Berlin and New York, 1983; 103–122.

    Chapter  Google Scholar 

  52. Paramonov, P.V., On harmonic approximation in the C 1-norm, Math. USSR Sb. 71 (1992), 183–207.

    Article  MathSciNet  Google Scholar 

  53. Paramonov, P.V. and Verdera, J., Approximation by solutions of elliptic equations on closed subsets of Euclidean space, to appear in Math. Scand.

    Google Scholar 

  54. Pommerenke, C., Über die analytische Kapazität, Archiv Math. (Basel) 11 (1960), 270–277.

    Article  MathSciNet  MATH  Google Scholar 

  55. Polking, J., Approximation in L p by solutions of elliptic partial differential equations, Amer. J. Math. 94 (1972), 1231–1244.

    Article  MathSciNet  MATH  Google Scholar 

  56. Saks, S., Theory of the Integral, Dover, New York, 1964.

    MATH  Google Scholar 

  57. Stein, E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970.

    MATH  Google Scholar 

  58. Trent, T. and Wang, J.L., Uniform approximation by rational modules on nowhere dense sets, Proc. Amer. Math. Soc. 81 (1981), 62–64.

    Article  MathSciNet  MATH  Google Scholar 

  59. Uy, N.X., Removable sets of analytic functions satisfying a Lipschitz condition, Ark. Mat. 17 (1979), 19–27.

    Article  MathSciNet  MATH  Google Scholar 

  60. Verdera, J., A weak type inequality for Cauchy transforms of finite measures, Publ. Mat. 36 (1992), 1029–1034.

    MathSciNet  MATH  Google Scholar 

  61. Verdera, J., On C m rational approximation, Proc. Amer. Math. Soc. 97 (1986), 621–625.

    MathSciNet  MATH  Google Scholar 

  62. Verdera, J., C m approximation by solutions of elliptic equations, and Calderon-Zygmund operators, Duke Math. J. 55 (1987), 157–187.

    Article  MathSciNet  MATH  Google Scholar 

  63. Verdera, J., BMO rational approximation and one dimensional Hausdorff content, Trans. Amer. Math. Soc. 297 (1986), 283–304.

    Article  MathSciNet  MATH  Google Scholar 

  64. Verdera, J., On the uniform approximation problem for the square of the Cauchy-Riemann operator, Pacific J. Math. 159 (1993), 379–396.

    MathSciNet  MATH  Google Scholar 

  65. Vitushkin, A.G., Analytic capacity of sets in problems of approximation theory, Russian Math. Surveys 22 (1967), 139–200.

    Article  MATH  Google Scholar 

  66. Wang, J.L., A localization operator for rational modules, Rocky Mountain J. Math. 19 (1989), 999–1002.

    Article  MathSciNet  MATH  Google Scholar 

  67. Zalcman, L., Analytic Capacity and Rational Approximation, Lecture Notes in Math. 50, Springer-Verlag, Berlin and New York, 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Verdera, J. (1994). Removability, capacity and approximation. In: Gauthier, P.M., Sabidussi, G. (eds) Complex Potential Theory. NATO ASI Series, vol 439. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0934-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0934-5_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4403-5

  • Online ISBN: 978-94-011-0934-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics