Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 440))

Abstract

To some extent, we can claim to“understand” 3-dimensional polytopes. in fact, Steinitz’ Theorem

  • “the combinatorial types of 3-polytopes are given by the simple, 3-connected planar graphs” (Steinitz, see Steinitz & Rademacher [12])

    reduces much of the geometry of 3-polytopes to entirely combinational questions. Its powerful extensions answer basic questions about representing combinatorial types by actual 3-dimensional polytopes:

  • “every 3-polytope can be realized with rational vertex coordiantes”(a trivial consequence of the inductive proof for Steinitz’ theorem),

  • “every combinatorial type of 3-polytopes can be realized with the shape of one facet (2-face)arbitrarily prescribed” (a theorem obtained by subtle adaption of the proof, by BArnette & Grýbaum [2]),

  • “the space of all realizations of a convex 3-polytope, up to affine equivalence, is contractible, and thus in particular connected” (this is what Steinitz actually proved, see[12]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnette D.W.: Two “simple” 3-spheres, Discrete Math. 67 (1987), 97–99

    Article  MathSciNet  MATH  Google Scholar 

  2. Barnette D.W. and Grünbaum B.: Preassigning the shape of a face. Pacific J. Math. 32 (1970), 299–302

    Article  MathSciNet  MATH  Google Scholar 

  3. Billera L.J. and Spellman Munson B.: Polarity and inner products in oriented matroids, European J. Combinatorics 5 (1984), 293–308

    MATH  Google Scholar 

  4. Björner A., Las Vergnas M., Sturmfels B., White N. and Ziegler G.M.: Oriented Matroids, Encyclopedia of Mathematics 46, Cambridge University Press, Cambridge 1993

    Google Scholar 

  5. Bokowski J., Ewald G. and Kleinschmidt P.: On combinatorial and affine automorphisms of polytopes, Israel J. Math. 47 (1984), 123–130

    Article  MathSciNet  MATH  Google Scholar 

  6. Bokowski J. and Guedes deOliveira A.: Simplicial convex 4-polytopes do not have the isotopy property, Portugaliae Mathematica 47 (1990), 309–318

    MathSciNet  MATH  Google Scholar 

  7. Bokowski J. and Sturmfels B.: Computational Synthetic Geometry, Lecture Notes in Mathematics 1355 (1989), Springer-Verlag Berlin Heidelberg

    Google Scholar 

  8. Goodman J.E. and Pollack R.: Proof of Grönbaum’s conjecture on the stretchability of certain arrangements of pseudolines, J. Combinatorial Theory Ser. A 29 (1980), 385–390

    Article  MathSciNet  MATH  Google Scholar 

  9. Grünbaum B.: Convex Polytopes, Interscience, London 1967; revised edition (V. Klee, P. Kleinschmidt, eds.), Springer-Verlag, in preparation

    MATH  Google Scholar 

  10. Kleinschmidt P.: On facets with non-arbitrary shapes, Pacific J. Math. 65 (1976), 97–101

    Article  MathSciNet  MATH  Google Scholar 

  11. Mnëv N.E.: The universality theorems on the classification problem of configuration varieties and convex polytopes varieties, in: “Topology and Geometry — Rohlin Seminar” (O. Ya. Viro, ed.), Lecture Notes in Mathematics 1346, Springer-Verlag, Berlin Heidelberg 1988, 527–544

    Chapter  Google Scholar 

  12. Steinitz E. and Rademacher H.: Vorlesungen über die Theorie der Polyeder, Springer-Verlag, Berlin 1934; reprint, Springer-Verlag 1976

    Google Scholar 

  13. Sturmfels B.: Boundary complexes of convex polytopes cannot be characterized locally, J. London Math. Soc. 35 (1987), 314–326

    Article  MathSciNet  MATH  Google Scholar 

  14. Sturmfels B.: Some applications of affine Gale diagrams to polytopes with few vertices, SIAM J. Discrete Math. 1 (1988), 121–133

    Article  MathSciNet  MATH  Google Scholar 

  15. Ziegler G.M.: Lectures on Polytopes, Notes of a course at TU Berlin 1992/93; Technical Report TR 93-6, ZIB Berlin, June 1993, 196 pages; book in preparation, (Springer-Verlag, New York, 1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ziegler, G.M. (1994). Three Problems About 4-Polytopes. In: Bisztriczky, T., McMullen, P., Schneider, R., Weiss, A.I. (eds) Polytopes: Abstract, Convex and Computational. NATO ASI Series, vol 440. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0924-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0924-6_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4398-4

  • Online ISBN: 978-94-011-0924-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics