Skip to main content

Chlorophyll budget in a productive tropical pond: algal production, sedimentation, and grazing by microzooplankton and rotifers

  • Chapter
Studies on the Ecology of Tropical Zooplankton

Part of the book series: Developments in Hydrobiology ((DIHY,volume 92))

  • 194 Accesses

Abstract

Chlorophyll a and pheopigment standing stocks and fluxes were used during a two weeks colonization experiment in a productive tropical pond (Layo, Cote d’Ivoire) in order to establish a chlorophyll budget. The experiment started from an azoic state (the pond was dried, limed and progressively filled with ground water). Algal production was the only input to the phytoplanktonic system, while grazing and algal sedimentation were the main outputs. Chlorophyll a reflected the algal biomass, and degradation pigments were considered as an index of grazing by zooplankton (here, protozoans and rotifers). An estimation of the input through the algal growth rate was performed for the two main biological events observed during the study. The first algal bloom, with a large picoplankton participation, was mainly regulated by microzooplankton (increase of the peak) and rotifers (decrease of the peak). The second bloom (exclusively nanoplankton) was regulated by rotifers (increase) and by sedimentation of living cells (decrease). This last process was related to a sudden exhaustion of ammonia in the water column. Because of the time-lag between algal proliferation and zooplanktonic bloom, the phytoplanktonic biomass was able to be adjusted according to the availability of nutrients. This self-regulation took the form of sinking of active algal cells, resulting in a transient reduction of the food available for rotifers. This process had drastic consequences in these shallow waters, since a major part of the phytoplankton produced was removed from the pelagic system. For an optimal exploitation of the natural resources of an aquaculture pond, a study of the equilibrium nutrients-phytoplankton-zooplankton would provide a basis for artificial intervention, with a view to limit the impact of this mode of natural regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan, J. D., 1976. Life history patterns in zooplankton. Am Nat. 110: 165–180.

    Article  Google Scholar 

  • Arfi, R., D. Guiral & J. P. Torréton, 1991. Natural recolonization in a productive tropical pond, day to day variations in the photo synthetic parameters. Aquat. Sci. 53: 39–54.

    Article  Google Scholar 

  • Azam, F. T., J. G. Fenchel, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Article  Google Scholar 

  • Barlow R. G., P. H. Burkill & R. F. C. Mantoura, 1988. Grazing and degradation of algal pigments by marine protozoan Oxyrrhis marina. J. Exp. Mar. Biol. Ecol. 119: 119–129.

    Article  CAS  Google Scholar 

  • Bienfang, P. K., 1980. Phytoplankton sinking rates in oligotrophic waters off Hawaii, USA. Mar. Biol. 61: 69–77.

    Article  Google Scholar 

  • Bonin, D. J., M. R. Droop, S. Y. Maestrini & M. C. Bonin, 1986. Physiological features of six micro-algae to be used as indicators of seawater quality. Cryptogamie, Algologie 7: 23–83.

    Google Scholar 

  • Bonou, C., 1990. Etude de la productivité planctonique dans un étang d’aquaculture en milieu saumâtre tropical. Thèse doct, 1MSP Toulouse, 210 pp.

    Google Scholar 

  • Boraas, M. E., C. C. Remsen & D. D. Seale, 1985. Phagotrophic flagellate populations in Lake Michigan, use of image analysis to determine numbers and size distribution. Eos 66: 1299.

    Google Scholar 

  • Burkill, P. H., R. F. C. Mantoura, C. A. Llewellyn & N. J. P. Owens, 1987. Microzooplankton grazing and selectivity of phytoplankton in coastal waters. Mar. Biol. 93: 581–590.

    Article  CAS  Google Scholar 

  • Burns, N. M. & F. Rosa, 1980. In situ measurement of the settling velocity of organic carbon particles and 10 species of phytoplankton. Limnol. Oceanogr. 25: 855–864.

    Article  Google Scholar 

  • Caron, D. A., F. R. Pick & D. R. S. Lean, 1985. Chroococcoid cyanobacteria in Lake Ontario, vertical and seasonal distributions during 1982. J. Phycol. 21: 171–175.

    Article  Google Scholar 

  • Conover, R. J., R. Durvasula, S. Roy & R. Wang, 1986. Probable loss of chlorophyll-derived pigments during passage through the gut of zooplankton, and some of the consequences. Limnol. Oceanogr. 3: 878–887.

    Article  Google Scholar 

  • Coté, B. & T. Platt, 1983. Day to day variations in the springsummer photo synthetic parameters of coastal marine phytoplankton. Limnol. Oceanogr. 28: 320–344.

    Article  Google Scholar 

  • Daley, R. J., 1973. Experimental characterization of lacustrine chlorophyll diagenesis. II. Bacterial, viral and herbivore grazing effects. Mar. Ecol. Prog. Ser. 9: 35–42.

    Google Scholar 

  • Dam, G. D. & W. T. Peterson, 1988. The effect of temperature on the gut clearance rate constant of planktonic copepods. J. exp. mar. Biol. Ecol. 123: 1–14.

    Article  Google Scholar 

  • Eppley, R. W., R. W. Holmes & J. D. H. Strickland, 1967. Sinking rates of marine phytoplankton measured with a fluorometer. J. exp. mar. Biol. Ecol. 1: 191–208.

    Article  Google Scholar 

  • Fahnenstiel, G. L., L. Sicko-Goad, D. Scavia & E. F. Stoermer, 1986. Importance of picoplankton in Lake Superior. Can. J. Fish. aquat. Sci. 43: 235–240.

    Article  Google Scholar 

  • Fenchel, T., 1982. Ecology of heterotrophic microflagellates. I. Some important forms and their functional morphology. Mar. Ecol. prog. Ser. 8: 211–223.

    Article  Google Scholar 

  • Fenchel, T., 1982. Ecology of heterotrophic microflagellates. II; Bioenergetics and growth. Mar. Ecol. prog. Ser. 8: 225–231.

    Google Scholar 

  • Goldman, J. C. & D. A. Caron, 1985. Experimental studies on an omnivorous microflagellate: implications for grazing and nutrient regeneration in the marine microbial food chain. Deep Sea Res. 32: 889–915.

    Google Scholar 

  • Grassé, P. P., 1965. Traité de zoölogie, tome IV (III). Masson, Paris, 1496 pp.

    Google Scholar 

  • Hem, S., M. Legendre, L. Trebaol, A. Cisse & Y. Moreau, 1993. Recherches sur les principales espèces d’intérêt aquacole en milieu lagunaire. Durand, J. R., P. Dufour & S. G. Zabi (eds), Environnement et ressources aquatiques de Côte d’Ivoire. 2 — Le milieu lagunaire. Editions de l’ORSTOM, in press.

    Google Scholar 

  • Herbland, A., 1988. The deep phaeopigments maximum in the ocean: reality or illusion. In Rothschild, B. J. (ed.), Toward a Theory on biological-Physical Interaction in the World Ocean, Kluwer Academic Publishers: 157–172.

    Google Scholar 

  • Jeffrey, S. W., 1974. Profiles of photo synthetic pigments in the ocean using the thin layer chromatography. Mar. Biol. 26: 101–110.

    Article  CAS  Google Scholar 

  • Lännergren, C., 1979. Buoyancy of natural populations of marine phytoplankton. Mar. Biol. 54: 1–10.

    Article  Google Scholar 

  • Legendre, M., M. Pagano & L. Saint-Jean, 1987. Peuplements et biomasse zooplanctonique dans des étangs de pisciculture lagunaire Layo, Côte d’Ivoire. Etude de la recolonisation après la mise en eau. Aquaculture 67: 321–341.

    Google Scholar 

  • Litaker, W., C. S. Duke, B. E. Kenney & J. Ramus, 1988. Diel chl a and phaeopigment cycles in a shallow tidal estuary, potential role of microzooplankton grazing. Marine Ecol. prog. Ser. 47: 259–270.

    Article  CAS  Google Scholar 

  • Lopez, M. D. G., M. E. Huntley & P. F. Sykes, 1988. Pigment destruction by Calanus pacificus: impact on the estimation of water column fluxes. J. Plankton Res. 10: 715–734.

    Article  CAS  Google Scholar 

  • Lorenzen, C. J., 1981. Chlorophyll b in the ocean. Deep Sea Res. 28: 1049–1056.

    Article  CAS  Google Scholar 

  • Lorenzen, C. J. & N. A. Welschmeyer, 1983. The in situ sinking rates of herbivore fecal pellets. J. Plankton Res. 5: 929–933.

    Article  Google Scholar 

  • Lorenzen, C. J., N. A. Welschmeyer, A. E. Copping & M. Vernet, 1983. Sinking rates of organic particulates. Limnol. Oceanogr. 28: 766–769.

    Article  CAS  Google Scholar 

  • Morel, A., 1978. Available, usable and stored radiant energy in relation to marine photosynthesis. Deep Sea Res. 25: 673–688.

    Article  CAS  Google Scholar 

  • Parsons, T. R., Y. Maita & C. M. Lalli, 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, New York.

    Google Scholar 

  • Pilarska, J., 1977. Ecophysiological studies on Brachionus rubens Ehrbg Rotatoria. I. Food selectivity and feeding rate. Pol. Arch. Hydrobiol. 24: 319–328.

    Google Scholar 

  • Pourriot, R. & P. Champ, 1982. Ecologie du plancton des eaux continentales. Pourriot, R. ed., Masson, Paris, 198 pp.

    Google Scholar 

  • Shuman, F. R. & C. J. Lorenzen, 1975. Quantitative degradation of chlorophyll by a marine herbivore. Limnol. Oceanogr. 20: 580–586.

    Article  CAS  Google Scholar 

  • SooHoo, J. B. & D. A. Kiefer, 1982a. Vertical distribution of phaeopigments. — I. A simple grazing and photooxidative scheme for small particles. Deep-Sea Res. 29: 1539–1551.

    Article  CAS  Google Scholar 

  • SooHoo, J. B. & D. A. Kiefer, 1982b. Vertical distribution of phaeopigments. — II. Rates of production and kinetics of photooxidation. Deep-Sea Res. 29: 1553–1563.

    CAS  Google Scholar 

  • Stoecker, D. K., 1984. Particles production by phytoplanktonic ciliates. Limnol. Oceanogr. 29: 930–940.

    Article  Google Scholar 

  • Titman, D. & P. Kilham, 1976. Sinking in freshwater phytoplankton, some ecological implications of cell nutrient status and physical mixing processes. Limnol. Oceanol. 21: 409–417.

    Article  Google Scholar 

  • Vernet, M. & C. J. Lorenzen, 1987. The relative abundance of pheophorbide a and pheophytin a in temperate marine waters. Limnol. Oceanogr. 32: 352–358.

    Article  CAS  Google Scholar 

  • Waltz, N., 1983. Continuous culture of the pelagic rotifer Keratella cochlearis and Brachionus angularis. Arch. Hydrobiol. 98: 70–92.

    Google Scholar 

  • Welschmeyer, N. A., A. E. Copping, M. Vernet & C. J. Lorenzen, 1984. Diel fluctuation in zooplankton grazing rate as determined from the downward vertical flux of pheopigments. Mar. Biol. 83: 263–270.

    Article  CAS  Google Scholar 

  • Welschmeyer, N. A. & C. J. Lorenzen, 1985. Chlorophyll budgets, zooplankton grazing and phytoplankton growth in a temperate fjord and the Central Pacific gyres. Limnol. Oceanogr. 30: 1–21.

    Article  CAS  Google Scholar 

  • Yentsch, S. & D. W. Menzel, 1963. A method for the determination of phytoplankton chlorophyll a and phaeophytin by fluorescence. Deep Sea Res. 10: 221–231.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. J. Dumont J. Green H. Masundire

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Arfi, R., Guiral, D. (1994). Chlorophyll budget in a productive tropical pond: algal production, sedimentation, and grazing by microzooplankton and rotifers. In: Dumont, H.J., Green, J., Masundire, H. (eds) Studies on the Ecology of Tropical Zooplankton. Developments in Hydrobiology, vol 92. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0884-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0884-3_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4382-3

  • Online ISBN: 978-94-011-0884-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics