Skip to main content

Statistical Models for Earthquake Occurrence: Clusters, Cycles and Characteristic Earthquakes

  • Chapter
  • 156 Accesses

Abstract

This paper reviews different approaches to modelling two key but opposing features of earthquake data, their tendency towards clustering and their tendency towards regular or periodic behaviour.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike, H. (1977). On Entropy Maximization Principle, Applications of Statistics, (ed. P. R. Krishnaiah), 27–41, North Holland, Amsterdam.

    Google Scholar 

  • Akaike, H. (1980). Likelihood and Bayes Procedure, Bayesian Statistics, (eds. J. M. Bernard, M. H. de Grott, D. V. Lindley and A. F. M. Smith), 141–204, Valencia U.P.

    Google Scholar 

  • Akaike, H. and Arahata, E. (1978). GALTHY: A Probability Density Estimation, Computer Science Monographs, 9, Institute of Statistical Mathematics, Tokyo.

    Google Scholar 

  • Aviles, C. A., Scholz, C. H. and Boatwright, J. (1987). Fractal Analysis Applied to Characteristic Segments of the San Andreas Fault, J. Geophys. Res., 92, 331–344.

    Article  Google Scholar 

  • Bak, P., Tang, C. and Wiesefeld, K. (1988). Self-Organized Criticality, Phys. Rev., A. 38, 364–374.

    Article  MathSciNet  MATH  Google Scholar 

  • Bebbington, M., Zheng, X. and Vere-Jones, D. (1990). Percolation Theory: A Model for Rock Fracture? Geophys. J. Int., 100, 215–220.

    Article  Google Scholar 

  • Bolt, B. A. (1988). Earthquakes (revised edition), W. H. Freeman, New York.

    Google Scholar 

  • Burridge, J. and Knopoff, L. (1967). Model and Theoretical Seismicity, Bull. Seism. Soc. Am., 57, 341–371.

    Google Scholar 

  • Cox, D. R. and Isham, V. (1980). Point Processes, Chapman and Hall, London.

    MATH  Google Scholar 

  • Cox, D. R. and Lewis, P. A. W. (1966). The Statistical Analysis of Series of Events, Methuen, London.

    MATH  Google Scholar 

  • Daley, D. J. and Vere-Jones, D. (1988). An Introduction to the Theory of Point Processes, Springer, New York.

    MATH  Google Scholar 

  • Davies, R. B. and Harte, D. (1987). Tests for Hurst Effect, Biometrika, 74, 95–101.

    Article  MathSciNet  MATH  Google Scholar 

  • Davis, P. M., Jackson, D. D. and Kagan, Y. Y. (1989). The Longer it Has Been Since the Last Earthquake, the Longer the Expected Time Till the Next? Bull. Seism. Soc. Am., 79, 1439–1496.

    Google Scholar 

  • Diggle, P. J. (1983). Statistical Analysis of Spatial Point Patterns, Academic Press, London.

    MATH  Google Scholar 

  • Diggle, P. J. and Marron, J. S. (1988). Equivalence of Smoothing Parameter Selectors in Density and Intensity Estimation, J. Am. Stat. Soc., 83, 793–800.

    MathSciNet  MATH  Google Scholar 

  • Falconer, K. (1990). Fractal Geometry: Mathematical Foundations and Applications. Wiley, Chichester.

    Book  MATH  Google Scholar 

  • Geilikhman, M. B., Golubeva, T. V. and Pisarenko, V. F. (1990a). Multifractal Patterns of Seismicity, Earth and Planetary Sciences Letters, 99, 127–132.

    Article  Google Scholar 

  • Geilikhman, M. B., Golubeva, T. V. and Pisarenko, V. F. (1990b). Self-Similar Hierarchical Structure of the Distribution of Earthquake Epicentres. In: Computer Analysis of Geophysical Fields, Computational Seismology, 23, 123–139, Nauka, Moscow.

    Google Scholar 

  • Geilikhman, M. B. and Pisarenko, V. F. (1989). On Self-Similarity in Geophysical Phenomena, Discrete Properties of the Geophysical Medium (ed. M. A. Sadovskiy), 109–131, Nauka, Moscow.

    Google Scholar 

  • Gutenberg, B. and Richter, C. F. (1949). Seismicity of the Earth, Princeton University Press, Princeton.

    Google Scholar 

  • Hawkes, A. G. (1971). Spectra of Some Self-Exciting and Mutually Exciting Point Processes, Biometrika, 58, 83–90.

    Article  MathSciNet  MATH  Google Scholar 

  • Hawkes, A. G. and Adamopoulos, L. (1973). Cluster Models for Earthquakes: Regional Comparisons, Bull. Int. Stat. Inst., 45, 454–461.

    Google Scholar 

  • Hawkes, A. G. and Oakes, D. (1974). A Cluster Representation of a Self-Exciting Process, J. Applied Prob., 17, 493–503.

    Article  MathSciNet  Google Scholar 

  • Hirata, T. (1989). Fractal Dimensions of Fault Systems in Japan: Fractal Structure in Rock Fracture Geometry at Various Scales, Pageoph., 131, 157–170.

    Article  Google Scholar 

  • Ito, K. and Matsuzaki, M. (1990). Earthquakes as Self-Organized Critical Phenomena, J. Geophys. Res., 95, 6853–6860.

    Article  Google Scholar 

  • Jeffreys, H. (1938). Aftershocks and periodicity in earthquakes, Gerlands Beiträge fur Geofysik, 53, 111–139.

    Google Scholar 

  • Kagan, Y. Y. (1981a). Spatial Distribution of Earthquakes: The Three-Point Correlation Function, Geophys. J. Roy. Astron. Soc., 67, 697–718.

    Article  Google Scholar 

  • Kagan, Y. Y. (1981b). Spatial Distribution of Earthquakes: The Four-Point Correlation Function, Geophys. J. Roy. Astron. Soc., 67, 719–733.

    Article  Google Scholar 

  • Kagan, Y. Y. (1987). Random stress nd earthquake statistics: time dependence. Geophys. J. Roy. Astron. Soc., 88, 723–731.

    Article  Google Scholar 

  • Kagan, Y. Y. (1991). Fractal Dimensions of Brittle Fracture, J. Non Linear Science, 1, 1–16.

    MathSciNet  MATH  Google Scholar 

  • Kagan, Y. Y. and Jackson, D. (1991). Long-Term Earthquake Clustering, Geophys. J. Int., 104, 117–133.

    Article  Google Scholar 

  • Kagan, Y. Y. (1991b). Seismic moment distribution. Geophys J. Int. 106, 123–134.

    Article  Google Scholar 

  • Kagan, Y. Y. (1991c). Likelihood analysis of earthquake catalogues. Geophys J. Int. 106, 709–716.

    Article  Google Scholar 

  • Kagan, Y. Y. and Knopoff, L. (1980). Spatial Distribution of Earthquakes: The Two-Point Correlation Function, Geophys. J. Roy. Astron. Soc., 67, 303–320.

    Article  Google Scholar 

  • Kagan, Y. Y. and Knopoff, L. (1984). A stochastic model of earthquake occurrence. Proc. 8th Int. Conf Earthquake Engineers, 1, 275–302.

    Google Scholar 

  • Karr, A. F. (1986). Point Processes and Their Statistical Inference, Marcel Dekker, New York.

    MATH  Google Scholar 

  • Kiremidjian, A. S. and Anagnos, T. (1984). Stochastic Slip Predictable Model for Earthquake Occurrences, Bull. Seism. Soc. Am., 74, 739–755.

    Google Scholar 

  • Knopoff, L. (1971). A Stochastic Model for the Occurrence of Main Sequence Earthquakes, Rev. Geophys. and Space Phys., 9, 175–188

    Article  Google Scholar 

  • Kutoyants, Yu. A. (1984). Parameter Estimation for Stochastic Processes (translated from revised Russian edition by B. Prakasa Rao), Helderman, Berlin.

    Google Scholar 

  • Lewis, P. A. W. and Shedler, G. S. (1976). Simulation of Non-Homogeneous Poisson Processes with Log-Linear Rate Function, Biometrika, 63, 501–506.

    Article  MathSciNet  MATH  Google Scholar 

  • Lewis, T. and Govier, L. J. (1964). Some Properties of Counts of Events for Certain Types of Point Processes, J. Roy. Stat. Soc. B, 26, 325–337.

    MathSciNet  MATH  Google Scholar 

  • Mandelbrot, B. (1977). Fractals: Form, Chance and Dimension, W. H. Freeman, San Francisco.

    MATH  Google Scholar 

  • Mandelbrot, B. (1983). The Fractal Geometry of Nature, W. H. Freeman, San Francisco.

    Book  Google Scholar 

  • Mandelbrot, B. (1988). An Introduction to Multifractal Distribution Functions, Fluctuations and Pattern Formation, (eds. H. E. Stanley and N. Ostrowsky), Kluwer Academic, Amsterdam.

    Google Scholar 

  • Mandelbrot, B. (1989). Multifractal Measures, Especially for the Geophysicist. PAGEOPH, Vol. 131, Nos Y2 (1989) pp 5–42.

    Article  Google Scholar 

  • Mogi, K. (1985). Earthquake Prediction, Academic Press, Tokyo.

    Google Scholar 

  • Molchan, G. M. (1991). Identification of Aftershocks: Review and New Approaches. In: Contemporary Methods of Interpretation of Seismological Data, Computational Seismology, 24, 19–49.

    Google Scholar 

  • Molchanov, S. A., Pisarenko, V. F. and Reznikova, A. Ya. (1986). On the Percolation Approach to Fracture Theory. In: Mathematical Methods in Seismology and Geodynamics, Computational Seismology, 19, 3–7.

    Google Scholar 

  • Musmeci, F. and Vere-Jones, D. (1992). A Space-Time Clustering Model for Historical Earthquakes, Ann. Inst. Stat. Math., 44, 1–11.

    Article  Google Scholar 

  • Nishenko, S. P. and Buland, R. (1987). A Generic Recurrence Interval Distribution for Earthquake Forecasting, Bull. Seism. Soc. Amer., 77, 1382–1399.

    Google Scholar 

  • Ogata, Y. (1983). Estimation of the Parameters in the Modified Omori Law for Frequencies by the Maximum Likelihood Procedure, J. Phys. Earth, 31, 115–124.

    Article  Google Scholar 

  • Ogata, Y. (1988). Statistical Models for Earthquake Occurrence and Residual Analysis for Point Processes, J. Amer. Stat. Ass., 83, 9–27.

    Article  Google Scholar 

  • Ogata, Y., Akaike, H. and Katsura, K. (1982). The Application of Linear Intensity Models to the Investigation of Causal Relations Between a Point Process and Another Stochastic Process, Am. Inst. Stat. Math., 34, 373–387.

    Article  MATH  Google Scholar 

  • Ogata, Y. and Katsura, K. (1986). Point Process Models with Linearly Parameterized Intensity for the Application to Earthquake Catalogue, J. Applied Prob., 23A, 231–240.

    MathSciNet  Google Scholar 

  • Ogata, Y. and Katsura, K. (1988). Likelihood Analysis of Spatial Inhomogeneity of Marked Point Patterns, Am. Inst. Stat. Math., 40, 29–39.

    Article  MathSciNet  MATH  Google Scholar 

  • Ogata, Y. and Shimazaki, K. (1984). Transition from Aftershock to Normal Activity: The 1965 Rat Island Earthquake Aftershock Sequence, Bull. Seisml. Soc. Am., 74, 1757–1765.

    Google Scholar 

  • Ogata, Y. and Tanemura, M. (1984). Likelihood Analysis of Spatial Point Patterns, J. Roy. Statist. Soc. B, 496–518.

    Google Scholar 

  • Ogata, Y. and Vere-Jones, D. (1984). Inference for Earthquake Models: A Self-Correcting Model, Stoch. Proc. Appl., 17, 337–347.

    Article  MathSciNet  MATH  Google Scholar 

  • Okubo, P. G. and Aki, K. (1987). Fractal Geometry in the San Andreas Fault System, J. Geophys. Res., 92, 345–355.

    Article  Google Scholar 

  • Pisarenko, V. F. and Pisarenko, D. (1990). Spectral Properties of Singular Self-Similar Measures and Their Geophysical Applications. In: Analysis of Geophysical Fields, Computational Seismology, 23, 107–122.

    Google Scholar 

  • Pisarenko, V. F. and Pisarenko, D. (1991). Spectral Properties of Multifractal Measures, Phys. Letters A, 153, 169–172.

    Article  MathSciNet  Google Scholar 

  • Reid, H. Feilding (1910). The Mechanics of Earthquakes, Univ. Calif. Publ. Bull. Dep. Geol. Sci., 6, 413–433.

    Google Scholar 

  • Ripley, B. D. (1981). Spatial Statistics, Wiley, New York.

    MATH  Google Scholar 

  • Sadovsky, M. A., Golubeva, T. V. et al. (1984). Characteristic Dimension of Rocks and Hierarchical Properties of Seismicity, Izv. Acad. Sci. USSR Phys. Solid Earth, 20, 87–95 (English trans.).

    Google Scholar 

  • Saito, M., Kikuchi, M. and Kudo, M. (1973). Analytical Solution of “Gogame Model of Earthquakes”, Zishin, 26(2), 19–25.

    Google Scholar 

  • Scholz, C. H. (1990). The Mechanics of Earthquakes and Faulting, Cambridge University Press, New York.

    Google Scholar 

  • Schwarz, D. P. and Coppersmith, K. (1984). Fault Behaviour and Characteristic Earthquakes: Examples from the Wasatch and San Andreas Faults, J. Geophys. Res., 89, 5681–5698.

    Article  Google Scholar 

  • Shimazaki, K. and Nakata, T. (1980). Time-Predictable Recurrence Model for Large Earthquakes, Geophys. Res. Letters, 7, 279–282.

    Article  Google Scholar 

  • Sieh, K. (1981). A Review of Geological Evidence of Recurrence Times for Large Earthquakes. In: Earthquake Prediction, an International Review, (eds. D. Simpson and P. Richards), M. Ewing Series 8, Am. Geophys. Union, 209–216, Washington D.C.

    Google Scholar 

  • Sieh, K., Stuiver, M. and Brillinger, D. (1988). A More Precise Chronology of Earthquakes Produced by the San Andreas Fault in Southern California, J. Geophys. Res., 94, 603–623.

    Article  Google Scholar 

  • Utsu, T. (1961). A Statistical Study on the Properties of Aftershocks, Geophys. Mag., 30, 521–605.

    Google Scholar 

  • Utsu, T. and Seki, A. (1955). Relation Between the Area of Aftershock Region and the Energy of the Main Shock, Zisin (2nd series), 7, 233–240.

    Google Scholar 

  • Vere-Jones, D. (1970). Stochastic Models for Earthquake Occurrence (with discussion), J. Roy. Statist. Soc. B., 32, 1–62.

    MathSciNet  MATH  Google Scholar 

  • Vere-Jones, D. (1976). A Branching Model for Crack Propagation, Pageoph., 114, 711–726.

    Article  Google Scholar 

  • Vere-Jones, D. (1977). Statistical Theories for Crack Propagation, Math. Geol., 9, 455–481.

    Article  Google Scholar 

  • Vere-Jones, D. (1978a). Earthquake Prediction: A Statistician’s View, J. Phys. Earth, 26, 129–146.

    Article  Google Scholar 

  • Vere-Jones, D. (1978b). Space-Time Correlations for Microearthquakes — A Pilot Study, Adv. App. Prob. Supp., 10, 73–87.

    Article  MATH  Google Scholar 

  • Vere-Jones, D. (1982). On the Estimation of Frequency in Point Process Data. In: Essays in Statistical Science, (eds. J. Gani and E. J. Hannan), J. App. Prob., 19A, 383–394.

    Google Scholar 

  • Vere-Jones, D. (1988). On the Variance Properties of Stress Release Models, Austral. J. Statist., 30A, 123–135.

    Article  Google Scholar 

  • Vere-Jones, D. and Davies, R. B. (1966). A Statistical Study of Earthquakes in the Main Seismic Region of New Zealand: Part II Time Series Analysis, N.Z.J. Geol. Geophys., 9, 251–284.

    Article  Google Scholar 

  • Vere-Jones, D. and Deng, Y. L. (1988). A Point Process Analysis of Historical Earthquakes from North China, Earthquake Research in China (English trans.), 2(2), 165–181.

    Google Scholar 

  • Vere-Jones, D. and Ogata, Y. (1984). On the Moments of a Self-Correcting Point Process, J. Appl. Prob., 21, 315–342.

    Article  MathSciNet  Google Scholar 

  • Vere-Jones, D. and Ozaki, T. (1982). Some Examples of Statistical Inference Applied to Point Process Data, Am. Inst. Stat. Math., 34, 189–207 (Errata *****?).

    Google Scholar 

  • Vere-Jones, D. and Zheng, X. (1991). Application of Stress Release Models to Historical Earthquakes from North China, Pageoph., 135, 559–576.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vere-Jones, D. (1994). Statistical Models for Earthquake Occurrence: Clusters, Cycles and Characteristic Earthquakes. In: Bozdogan, H., et al. Proceedings of the First US/Japan Conference on the Frontiers of Statistical Modeling: An Informational Approach. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0854-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0854-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4368-7

  • Online ISBN: 978-94-011-0854-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics