Advertisement

Classical Cosmology

  • M. S. Longair
Part of the Astrophysics and Space Science Library book series (ASSL, volume 187)

Abstract

Some of the problems of determining the cosmological parameters, H 0, q 0, Ω0, Λ and T 0 are discussed. It is argued that direct physical methods of determining cosmological distances are to be preferred to those which involve the use of ‘standard’ properties of distant objects. Although these are not easy, the realisation of these methods should be a key objective for the astrophysical cosmology of the 21st century.

Keywords

Cosmological Constant Radio Source Radio Galaxy Cosmological Parameter Stellar Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birkinshaw, M. (1990). In The Cosmic Microwave Background: 25 Years Later, N. Mandolesi and N. Vittorio (eds.), 77. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  2. Blandford, R.D. and Narayan, R. (1992). Ann. Rev. Astr. Astrophys., 30, 311.ADSCrossRefGoogle Scholar
  3. Carroll, S.M., Press, W.H. and Turner, E.L. (1992). Ann. Rev. Astr. Astrophys., 30, 499.ADSCrossRefGoogle Scholar
  4. Dashevskii, V.M. and Zeldovich, Ya.B. (1964). Astron. Zh., 41, 1071.ADSGoogle Scholar
  5. Dunlop, J. and Peacock, J.A. (1990). Mon. Not. R. Astr. Soc., 247,19.ADSGoogle Scholar
  6. Hesser, J.E., Harris, W.E., Vanden Berg, D.A., Allwright, J.W.B., Schott, P. and Stetson, P. (1989). Publ. Astron. Soc. Pacific, 99, 739.ADSCrossRefGoogle Scholar
  7. Kellermann, K.I. (1993). Nature, 361, 134.ADSCrossRefGoogle Scholar
  8. Lilly, S.J. and Longair, M.S. (1984). Mon. Not. R. Astr. Soc, 211, 833.ADSGoogle Scholar
  9. Longair, M.S. (1993). Q. J. R. Astr. Soc, 34, 157.ADSGoogle Scholar
  10. Panagia, N. Gilmozzi, R., Macchetto, F., Adorf, H-H. and Kirshner, R.P. (1991). Astrophys. J., 380, L23.ADSCrossRefGoogle Scholar
  11. Rowan-Robinson, M. (1985). The Cosmological Distance Ladder: Distance and Time in the Universe. New York: W.H. Freeman and Company.Google Scholar
  12. Sandage, A.R. (1968). Observatory, 88, 99.ADSGoogle Scholar
  13. Sandage, A.R. (1988). Ann. Rev. Astr. Astrophys., 26, 561.ADSCrossRefGoogle Scholar
  14. Sandage, A.R. (1993). Saas-Fee Lectures 1993 — The Deep Universe. Berlin: Springer-Verlag (in press).Google Scholar
  15. Zeldovich, Ya.B. (1968). Uspekhi Fiz. Nauk, 95, 209.Google Scholar
  16. Zeldovich, Ya.B. (1964). Astron. Zh., 41, 19.ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • M. S. Longair
    • 1
  1. 1.Cavendish LaboratoryCambridgeUK

Personalised recommendations