Seismology of the Sun and Stars

  • D. O. Gough
Part of the Astrophysics and Space Science Library book series (ASSL, volume 187)


Ground-based observations of the spectrum of solar oscillations have already permitted us to put tight constraints on the hydrostatic stratification of the sun, and to infer the angular velocity throughout much of the solar interior. From this information we have identified an error in earlier calculations of stellar opacity, and we have evidence that present understanding of the equation of state is inadequate for determining the eigenfrequencies of solar models to the accuracy of the observations. The consequent revision of opacity calculations has already resolved several longstanding problems concerning a variety of pulsating stars. Moreover, we have a plausible estimate of the quadrupole moment J 2 of the sun’s gravitational potential, which is substantially more reliable than any other, and which, in conjunction with radar ranging measurements, is consistent with General Relativity. Currently available observations are limited by our failure to observe the sun continuously; in particular, we are thus inhibited from making firm deductions about the structure of the thermonuclear energy generating core.

The new generation of helioseismic instruments will surely add substantially to our diagnostic information. The instruments include ground-based networks of non-imaging spectrometers, such as IRIS and BISON which are already operational, the future ground-based network of imaging spectrometers of the GONG, and the suite of helioseismic instruments to be flown on the spacecraft SOHO. From these we hope to learn about the physical conditions under which the nuclear reactions are taking place, and thereby, in conjunction with the next generation of neutrino detectors, make a significant contribution to neutrino physics. We shall also determine the angular velocity throughout the solar interior, permitting us to calculate J 2 to much higher accuracy, and, of course, learn more about the thermodynamic properties of dense plasmas. Our hope is that we shall also learn about large-scale convective flows, asphericity in the interior structure, and how all these phenomena vary with the solar cycle.

Astroseismology is not yet a reality. Of course, it will not be possible to determine the interior structures of other stars in anything like as much detail as is possible for the sun. However, theoretical calculations have shown that in principle one can infer the structure of stellar cores, and one can determine the locations and possibly even the nature of near discontinuities in the stratification, such as occur at the boundaries of convection zones. Less ambitiously, one can obtain some information about the gross rotational shear, and one can calibrate stars in open clusters, and thereby provide important tests of the theory of stellar evolution. It is quite impractical for the observations required for such calibrations to be carried out from the ground, but it is relatively straightforward to do so from space.


Sound Speed Convection Zone Solar Model Solar Interior Solar Convection Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ando, H., & Osaki, Y. 1975, PASJ, 27, 581ADSGoogle Scholar
  2. Berthomieu, G., Cooper, A.J., Gough, D.O., Osaki, Y., Provost, J., & Rocca, A. 1980, in Nonlinear and Nonradial Stellar Pulsations, ed. H. A. Hill, & W.A. Dziembowski (Springer, Heidelberg), 306Google Scholar
  3. Brown, T.M., & Morrow, C.A. 1987, ApJ Lett, 314, 22ADSCrossRefGoogle Scholar
  4. Brown, T.M., Christensen-Dalsgaard, J., Dziembowski, W.A., Goode, P.R., Gough, D.O., & Morrow, C.A. 1989, Ap. J., 343, 526ADSCrossRefGoogle Scholar
  5. Christensen-Dalsgaard, J., & Gough, D.O. 1981, A&A, 104, 173ADSGoogle Scholar
  6. Christensen-Dalsgaard, J., Duvall Jr, T.L., Gough, D.O., Harvey, J.W., & Rhodes Jr, E.J. 1985, Nature, 315, 378ADSCrossRefGoogle Scholar
  7. Christensen-Dalsgaard, J., Gough, D.O. & Thompson, M.J. 1991, Ap. J., 378, 413ADSCrossRefGoogle Scholar
  8. Christensen-Dalsgaard, J., Proffitt, C.R., & Thompson, M.J. 1993, Ap. J., 403, L75ADSCrossRefGoogle Scholar
  9. Cox, A.N., Guzik, J.A., & Kidman, R.B. 1989, Ap.J., 342, 1187ADSCrossRefGoogle Scholar
  10. Cox, A.N., Morgan, S.M., Rogers, F.J., & Iglesias, C.A. 1992, Ap.J., 393, 272ADSCrossRefGoogle Scholar
  11. Däppen, W., Gough, D.O., & Thompson, M.J. 1988, in Seismology of the Sun and Sun-Like Stars ESA SP-286, ed. V. Domingo (Noordwijk), 505Google Scholar
  12. Deubner, F.L. 1975, Astron. Astrophys., 44, 371ADSGoogle Scholar
  13. Duvall Jr, T.L., Harvey, J.W., Libbrecht, K.G., Popp, B.D., & Pomerantz, M.A. 1988, Ap. J., 324, 1158ADSCrossRefGoogle Scholar
  14. Duvall Jr, T.L. 1982, Nature, 300, 242ADSCrossRefGoogle Scholar
  15. Duvall Jr, T.L., & Harvey, J.W. 1984, Nature, 310, 19ADSCrossRefGoogle Scholar
  16. Duvall Jr, T.L., Dziembowski, W.A., Goode, P.R., Gough, D.O., Harvey, J.W., & Leibacher, J.W. 1984, Nature, 310, 22ADSCrossRefGoogle Scholar
  17. Duvall Jr, T.L., Harvey, J.W., & Pomerantz, M.A. 1986, Nature, 321, 500ADSCrossRefGoogle Scholar
  18. Dziembowski, W.A., & Goode, P.R. 1991, Ap. J., 376, 782ADSCrossRefGoogle Scholar
  19. Dziembowski, W.A., & Pamyatnykh, A.A. 1993, MNRAS, 262, 204ADSGoogle Scholar
  20. Dziembowski, W.A., Moskalik, P., & Pamyatnykh, A.A. 1993, MNRAS, in pressGoogle Scholar
  21. Elsworth, Y., Howe, R., Isaak, G.R., McLeod, C.P., & New, R. 1990, Nature, 345, 322ADSCrossRefGoogle Scholar
  22. Elsworth, Y., Howe, R., Isaak, G.R., McLeod, C., Miller, P., Speake, C., Wheeler, S., & New, R. 1993, GONG 1992: Seismic Investigation of the Sun and Stars, ed. T.M. Brown (Ast. Soc. Pacific), 107Google Scholar
  23. Fossat, E. 1991, Solar Phys., 133, 1ADSCrossRefGoogle Scholar
  24. Gough, D.O. 1976, in The Energy Balance and Hydrodynamics of the Solar Chromosphere and Corona, ed. R.M. Bonnet, P. Delache, & G. de Bussac (Clermont-Ferrand), 3Google Scholar
  25. Gough, D.O. 1982, Europhys. News, 13, 3Google Scholar
  26. Gough, D.O., & Kosovichev, A.G. 1993, MNRAS, in pressGoogle Scholar
  27. Gough, D.O., Kosovichev, A.G., Sekii, T., Libbrecht, K.G., & Woodard, M.F. 1993a, in Seismic Investigation of the Sun and Stars, ed. T.M. Brown (Conf. Ser. Astr. Soc. Pacific), 213Google Scholar
  28. Gough, D.O., Kosovichev, A.G., Sekii, T., Libbrecht, K.G., & Woodard, M.F. 1993b, in Inside the Stars, ed. W.W. Weiss (Conf. Ser. Astr. Soc. Pacific), 93Google Scholar
  29. Grec, G., Fossat, E., & Pomerantz, M.A. 1980, Nature, 288, 541ADSCrossRefGoogle Scholar
  30. Iglesias, C.A., Rogers, F.J., & Wilson, B.G. 1987, Ap. J., 322, 245CrossRefGoogle Scholar
  31. Iglesias, C.A., Rogers, F.J., & Wilson, B.G. 1992, Ap. J., 397, 717ADSCrossRefGoogle Scholar
  32. Kiriakidis, M., El Eid, M.F., & Glatzel, W. 1992, MNRAS, 255, 1ADSGoogle Scholar
  33. Korzennik, S.G., & Ulrich, R.K. 1989, Ap. J., 339, 1144ADSCrossRefGoogle Scholar
  34. Kosovichev, A.G., Christensen-Dalsgaard, J., Däppen, W., Dziembowski, W.A., Gough, D.O., & Thompson, M.J. 1992, MNRAS, 259, 536ADSGoogle Scholar
  35. Kuhn, J.R., & Libbrecht, K.G. 1991, Ap. J., 381, L35ADSCrossRefGoogle Scholar
  36. Libbrecht, K.G., & Kaufman, J.M. 1988, Ap. J., 324, 1172ADSCrossRefGoogle Scholar
  37. Libbrecht, K.G., & Woodard, M.F. 1990, Nature, 345, 779ADSCrossRefGoogle Scholar
  38. Mihalas, D., Däppen, W., & Hummer, D.G. 1988, Ap. J., 331, 815ADSCrossRefGoogle Scholar
  39. Morrow, C.A., Gilman, P.A., & DeLuca, E.E. 1988, in Seismology of the Sun and Sun-Like Stars, ESA SP-286, ed. V. Domingo (Noordwijk), 109Google Scholar
  40. Moskalik, P., & Dziembowski, W.A. 1992, A&A, 256, L5ADSGoogle Scholar
  41. Moskalik, P., Buchler, J.R., & Marom, A. 1992, Ap. J., 385, 685ADSCrossRefGoogle Scholar
  42. Rhodes Jr, E.J., Ulrich, R.K., & Simon, G.W. 1977, Ap. J., 218, 501ADSCrossRefGoogle Scholar
  43. Schou, J. 1993, PhD dissertation, University of AarhusGoogle Scholar
  44. Simon, N.R. 1982, Ap. J., 260, L87ADSCrossRefGoogle Scholar
  45. Toutain, T. & Fröhlich, C. 1992, A&A, 257, 287ADSGoogle Scholar
  46. Ulrich, R.K. 1970, Ap. J., 162, 993ADSCrossRefGoogle Scholar
  47. Ulrich, R.K., & Rhodes Jr, E.J. 1977, Ap. J., 218, 521ADSCrossRefGoogle Scholar
  48. Winget, D.E. 1991, in White Dwarfs, ed. G. Vauclair & E. Sion (Dordrecht: Kluwer), 129CrossRefGoogle Scholar
  49. Woodard, M.F., & Libbrecht, K.G. 1993, Ap. J., 402, L77ADSCrossRefGoogle Scholar
  50. Woodard, M.F., Kuhn, J.R., Murray, N., & Libbrecht, K.G. 1991, Ap. J., 373, L81ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • D. O. Gough
    • 1
  1. 1.Department of Applied Mathematics and Theoretical PhysicsInstitute of AstronomyCambridgeUK

Personalised recommendations