Skip to main content

Solvent Mean Force Perturbations of Molecular Vibration, Isomerization and Dissociation

  • Conference paper
Reaction Dynamics in Clusters and Condensed Phases

Abstract

The mean force potential represents the effect of solvent-solute interactions on solvation thermodynamics, and thus on solute chemical potentials and equilibrium constants. Chemical reaction dynamics, on the other hand, may involve additional non-equilibrium contributions to the solvation of short-lived intermediates. Nevertheless, the solvent mean force potential places significant constraints on reaction dynamics as well as thermodynamics by defining the equilibrium structure of the entire reactive potential surface. Perturbed hard sphere fluid theories [13], which make optimal use of analytical Statistical mechanical expressions for the thermodynamic properties of hard sphere fluids in predicting the properties of real liquids, offer an appealing formalism for modeling such effects [46].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chandler, D., Weeks, J.D., and Andersen, H.C. (1983) “Van der Waals Picture of Liquids, Solids, and Phase Transformations”, Science 220, 787–794

    Article  CAS  Google Scholar 

  2. Barker, J.A., and Henderson, D. (1976) “What is ‘liquid’? Understanding the states of matter”, Rev. Mod. Phys. 48, 587–671

    Article  CAS  Google Scholar 

  3. Hansen, J.P., and McDonald, I.R. (1986) Theory of Simple Liquids, Academic Press, London

    Google Scholar 

  4. Pratt, L.R., Hsu, C.S., and Chandler, D. (1978) “Statistical mechanics of small chain molecules in liquids. I. Effects of liquid packing on conformational structures”, J. Chem. Phys. 68, 4202–4212

    Article  CAS  Google Scholar 

  5. Schweizer, K.S., and Chandler, D. (1982) “Vibrational dephasing and frequency shifts of polyatomic molecules in solution”, J. Chem. Phys. 76, 2296–2314

    Article  CAS  Google Scholar 

  6. Ben-Amotz, D. (1993) “Chemical Reaction Volumes in Model Fluid Systems. 1. Hard-Sphere Solvation and Diatomic Dissociation Processes”, J. Phys. Chem. 97, 2314–2319

    Article  CAS  Google Scholar 

  7. Ben-Amotz, D., and Herschbach, D.R. (1993) “Hard Fluid Model for Solvent-Induced Shifts in Molecular Vibrational Frequencies”, J. Phys. Chem. 97, 2295–2306

    Article  CAS  Google Scholar 

  8. Devendorf, G.S., and Ben-Amotz, D. (1993) “Vibrational Frequency Shifts of Fluid Nitrogen up to Ultrahigh Temperatures and Pressures”, J. Phys. Chem. 97, 2307–2313

    Article  CAS  Google Scholar 

  9. Ben-Amotz, D., Lee, M.-R., Cho, S.Y., and List, D.J. (1992) “Solvent and pressure-induced perturbations of the vibrational potential surface of acetonitrile”, J. Chem. Phys. 96, 8781–8792

    Article  CAS  Google Scholar 

  10. Longuet-Higgins, H.C., and Widom, B. (1964) “A rigid sphere model for the melting of argon”, Mol. Phys. 8, 549–556

    Article  CAS  Google Scholar 

  11. Ben-Amotz, D., and Herschbach, D.R. (1990) “Estimation of Effective Diameters for Molecular Fluids”. J. Phys. Chem. 94. 1038–1047

    Article  Google Scholar 

  12. Ben-Amotz, D., and Willis, K.G. (1993) “Molecular Hard Sphere Volume Increments”, J. Phys. Chem., in press.

    Google Scholar 

  13. Bondi, A. (1964) “van der Waals Volumes and Radii”, J. Phys. Chem. 68,441–451

    Article  CAS  Google Scholar 

  14. Buckingham, A.D. (1958) “Solvent effects in infra-red spectroscopy”, Proc. Roy. Soc. A 248, 169–182; Buckingham, A.D. (1960) “Solvent effects in vibrational spectroscopy”, Trans. Farad. Soc. 56, 753-760; Buckingham, A.D. (1960) “A theory of frequency, intensity and band-width changes due to solvents in infra-red spectroscopy”, Proc. Rov. Soc. A 255, 32-39

    Article  CAS  Google Scholar 

  15. Dijkman, F.G., and van der Maas, J.H. (1977) “Inhomogeneous broadening of Morse oscillators in liquids”, J. Chem. Phys. 66, 3871–3878

    Article  CAS  Google Scholar 

  16. Zakin, M.R., and Herschbach, D.R. (1988) “Density dependence of attractive forces for hydrogen stretching vibrations of molecules in compressed liquids”, J. Chem. Phys. 89, 2380–2387

    Article  CAS  Google Scholar 

  17. Etters, R.D., Belak, J., and LeSar, R. (1986) “Thermodynamic character of the vibron frequencies and equation of state in dense, high-temperature, fluid N2” Phys. Rev. B 34, 4221–4223

    Article  CAS  Google Scholar 

  18. Llano-Restrepo, M., and Chapman, W.G. (1992) “Bridge function and cavity correlation function for the Lennard-Jones fluid from simulation”, J. Chem. Phys. 97, 2046–2054

    Article  CAS  Google Scholar 

  19. Shing, K.S., Gubbins, K.E., and Lucas, K. (1988) “Henry constants in non-ideal fluid mixtures. Computer simulation and theory”, Mol. Phys. 65,1235–1252

    Article  CAS  Google Scholar 

  20. Ghonasgi, D., Llano-Restrepo, M., and Chapman, W.G. (1993) “Henry’s law constant for diatomic and polyatomic Lennard-Jones molecules”, J. Chem. Phys. 98, 5662–5667

    Article  CAS  Google Scholar 

  21. Ravi, R., de Souza, L.E.S., and Ben-Amotz, D. (1993) “Reaction Volumes in Model Fluid Systems II. Diatomic Dissociation in Lennard-Jones Solvents”, in preparation.

    Google Scholar 

  22. Shim, J.-J., and Johnston, K.P. (1991) “Phase Equilibria, Partial Molar Enthalpies, and Partial Molar Volumes Determined by Supercritical Fluid Chromatography”, J. Phys. Chem. 95, 353–360

    Article  CAS  Google Scholar 

  23. Peck, D.G., Mehta, A.J., Johnston, K.P. (1989) “Pressure Tuning of Chemical Reaction Equilibria in Supercritical Fluids”, J. Phys. Chem. 93, 4297–4304

    Article  CAS  Google Scholar 

  24. Kimura, Y, Yoshimura, Y, and Nakahara, M. (1989) “Chemical reaction in medium density fluid. Solvent density effects on the dimerization equilibrium of 2-methyl-2-nitrosopropane in carbon dioxide”, J. Chem. Phys. 90, 5679–5686

    Article  CAS  Google Scholar 

  25. Debenedetti, P.G. (1987) “Clustering in Dilute, Binary Supercritical Mixtures: A Fluctuation Analysis”, Chem. Eng. Sci. 42, 2203–2212

    Article  CAS  Google Scholar 

  26. Debenedetti, P.G., and Mohamed, R.S. (1989) “Attractive, weakly attractive, and repulsive near-critical systems”, J. Chem. Phys. 90,4528–4536

    Article  CAS  Google Scholar 

  27. Devaure, J., and Lascombe, J. (1979) “Étude par spectrométrie Raman de l’effet de la pression et de la température sur les conformations du butane, du méthy1-2-butane et du diméthyl-2-3-butane a l’état liquide pur”, Nouv. J. Chim. 3,579–581

    CAS  Google Scholar 

  28. Kint, S., Scherer, J.R., and Snyder, R.G. (1980) “Raman spectra of liquid n-alkanes. III. Energy difference between trans and gauche n-butane”, J. Chem. Phys. 73, 2599–2602

    Article  CAS  Google Scholar 

  29. Verma, A.L., Murphy, W.F., and Bernstein, H.J. (1974) “Rotational isomerism. XI. Raman spectra of n-butane, 2-methylbutane, and 2, 3-dimethylbutane”, J. Chem. Phys. 60. 1540–1544

    Article  CAS  Google Scholar 

  30. Durig, J.R., Wang, A., Beshir, W., and Little, T.S. (1991) “Barrier to Asymmetric Internal Rotation, Conformational Stability, Vibrational Spectra and Assignments, and Ab Initio Calculations of n-Butane-d 0, d 5 and d 10”. J. Raman Spectrosc. 22. 683–704

    Article  CAS  Google Scholar 

  31. Murphy, W.F., Fernández-Sánchez, J.M., and Raghavachari, K. (1991) “Harmonie Force Field and Raman Scattering Intensity Parameters of n-Butane”, J. Phys. Chem. 95, 1124–1139

    Article  CAS  Google Scholar 

  32. Gassier, G., and Hüttner, W. (1990) “The gauche-trans Energy Difference of n-Butane from a Doppler Limited Investigation of the 740 cm-1 CH2-Rocking Region”, Z. Naturforsch. 45a. 113–125

    Google Scholar 

  33. Hoyland, J.R. (1968) “Internal rotation in butane”, J. Chem. Phys. 49, 2563–2566

    Article  CAS  Google Scholar 

  34. Nomura, H., Murasawa, K, Ito, N., Iida, F., and Udagawa, Y. (1984) “Pressure Effect on Conformational Equilibria of 1,2-Dichloroethane and 1,2-Dibromoethane by Means of Raman Spectroscopy”, Bull. Chem. Soc. Jpn. 57, 3321–3322

    Article  CAS  Google Scholar 

  35. Seki, W., Choi, P.-K., and Takagi, K. (1983) “Ultrasonic relaxation and the volume difference between the rotational isomers in 1,2-dichloroethane”, Chem. Phys. Lett. 98, 518–521

    Article  CAS  Google Scholar 

  36. Takagi, K., Choi, P.-K., and Seki, W. (1983) “Rotational isomerism and ultrasonic relaxation in 1,2-dibromoethane”, J. Chem. Phys. 79,964–968

    Article  CAS  Google Scholar 

  37. Asano, T, and le Noble, W.J. (1978) “Activation and Reaction Volumes in Solution”, Chem. Rev. 78. 407–489

    Article  CAS  Google Scholar 

  38. Pratt, L.R., and Chandler, D. (1980) “Effective intermolecular potentials for molecular bromine in argon. Comparison of theory with simulation”, J. Chem. Phys. 72, 4045–4048

    Article  CAS  Google Scholar 

  39. Herman, M.F., and Berne, B.J. (1983) “Monte Carlo simulation of solvent effects on vibrational and electronic spectra”, J. Chem. Phys. 78, 4103–4117

    Article  CAS  Google Scholar 

  40. Nicolas, J.J., Gubbins, K.E., Street, W.B., and Tildesley, D.J. (1979) “Equation of state for the Lennard-Jones fluid”, Mol. Phys. 37, 1429–1454

    Article  CAS  Google Scholar 

  41. Weast, R.C., Astle, M.J., and Beyers, W.H. (eds.) (1986) CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, Florida.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Ben-Amotz, D., De Souza, L.E.S. (1994). Solvent Mean Force Perturbations of Molecular Vibration, Isomerization and Dissociation. In: Jortner, J., Levine, R.D., Pullman, B. (eds) Reaction Dynamics in Clusters and Condensed Phases. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0786-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0786-0_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4337-3

  • Online ISBN: 978-94-011-0786-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics