Skip to main content

Simulation of Electronic Spectroscopy and Relaxation in Aqueous Solution

  • Conference paper
Reaction Dynamics in Clusters and Condensed Phases

Abstract

Computer simulation of quantum systems in solution are allowing the direct observation of electronic dynamics of solutes at a molecular level on the same timescale as that probed by ultrafast transient spectroscopy. Here, we describe some of our recent theoretical approaches to the analysis of electronic spectroscopy and relaxation dynamics in solution, and outline some of the recent results obtained for the experimentally probed cases of energetic excess electrons in liquid water and for an aqueous halide ion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The SPC, SPC/E and the flexible “SPC/F” models and their properties are summarized in: K. Watanabe and M.L. Klein, “Effective Pair Potentials and the Properties of Water”, Chem. Phys. 131,157 (1989).

    Google Scholar 

  2. J. Schnitker and PJ. Rossky, “An Electron-Water Pseudopotential for Condensed Phase Simulation”, J. Chem. Phys. 86, 3462 (1987).

    Article  CAS  Google Scholar 

  3. G.J. Martyna and M.L. Klein, “The electronic states of lithium atoms in ammonia clusters and solution”, J. Chem. Phys. 96, 7662 (1992).

    Article  CAS  Google Scholar 

  4. A. Wallqvist, D. Thirumalai, and B.J. Berne, “Path integral Monte Carlo study of the hydrated electron”, J. Chem. Phys. 86, 6404 (1987).

    Article  CAS  Google Scholar 

  5. R.N. Barnett, U. Landman, C.L. Cleveland and J. Jortner, “Electron localization in water clusters. I. Electron-water pseudopotential”, J. Chem. Phys. 88, 4421 (1988).

    Article  CAS  Google Scholar 

  6. M. Hilczer, W.M. Bartczak, and M. Sopek, “An Excess Electron-Methanol Pseudopotential”, J. Phys. Chem. 96, 2736 (1992).

    Article  CAS  Google Scholar 

  7. B.J. Berne and D. Thirumalai, “On the Simulation of Quantum Systems: Path Integral Methods”, Ann. Rev. Phys. Chem. 37, 401 (1986).

    Article  CAS  Google Scholar 

  8. J.S. Bader, R.A. Kuharski, and D. Chandler, “Role of nuclear tunneling in aqueous ferrous-ferric electron transfer”, J. Chem. Phys. 93, 230 (1990).

    Article  CAS  Google Scholar 

  9. J.K. Hwang, Z.T. Chu, A. Yadav, and A. Warshel, “Simulations of Quantum Mechanical Corrections for Rate Constants of Hydride-Transfer Reactions in Enzymes and Solutions”, J. Phys. Chem. 95, 8445 (1991).

    Article  CAS  Google Scholar 

  10. J. Lobaugh and G.A. Voth, “Calculation of quantum activation free energies for proton transfer reactions in polar solvents”, Chem. Phys. Letters 198, 311 (1992).

    Article  CAS  Google Scholar 

  11. D. Thirumalai, E.J. Bruskin, and B.J. Berne, “On the use of semiclassical dynamics in determining electronic spectra of Br2 in an Ar matrix”, J. Chem. Phys. 83, 230 (1985).

    Article  CAS  Google Scholar 

  12. A. Selloni, P. Carnevali, R. Car, M. Parrinello, “Localization, Hopping, and Diffusion of Electrons in Molten Salts”, Phys. Rev. Letters 59, 823 (1987).

    Article  CAS  Google Scholar 

  13. R.N. Barnett, U. Landman, and A. Nitzan, “Dynamics and spectra of a solvated electron in water clusters”, J. Chem. Phys. 89, 2242 (1988).

    Article  CAS  Google Scholar 

  14. F. Webster, P.J. Rossky, and R.A. Friesner, “Nonadiabatic Processes in Condensed Matter: Semi-Classical Theory and Implementation”, Comput. Phys. Commun. 63, 494 (1991).

    Article  CAS  Google Scholar 

  15. J.C. Tully and R.K. Preston, “Trajectory Surface Hopping Approach to Nonadiabatic Molecular Collisions: The Reaction of H+ with D2”, J. Chem. Phys. 55, 562 (1971).

    Article  CAS  Google Scholar 

  16. P. Pechukas, “Time-Dependent Semiclassical Scattering Theory. I. Potential Scattering”, Phys.Rev. 181, 166 (1969); “Time-Dependent Semiclassical Scattering Theory. II. Atomic Collisions”, Phys.Rev. 181, 174 (1969).

    Article  CAS  Google Scholar 

  17. E. Neria, A. Nitzan, R.N. Barnett, and U. Landman, “Quantum Dynamical Simulations of Nonadiabatic Processes: Solvation Dynamics of the Hydrated Electron”, Phys. Rev. Lett. 67,1011 (1991); E. Neria and A. Nitzan, “Semiclassical Evaluation of Non-Adiabatic Rates in Condensed Phases”, J. Chem. Phys. (in press). The second of these works provides revised values for the excited state lifetimes reported in the first.

    Article  CAS  Google Scholar 

  18. J.C. Tully, “Molecular dynamics with electronic transitions”, J. Chem. Phys. 93, 1061 (1990).

    Article  CAS  Google Scholar 

  19. B. Space and D.F. Coker, “Nonadiabatic dynamics of excited excess electrons in simple fluids”, J. Chem. Phys. 94,1976 (1991); “Dynamics of trapping and localization of excess electrons in simple fluids”, ibid 96, 652 (1992).

    Article  CAS  Google Scholar 

  20. F.J. Webster, J. Schnitker, M.S. Friedrichs, R.A. Friesner, and P.J. Rossky, “Solvation Dynamics of the Hydrated Electron: A Nonadiabatic Quantum Simulation”, Phys. Rev. Lett. 66, 3172 (1991).

    Article  CAS  Google Scholar 

  21. J.S. Schnitker, A.K. Motakabbir, PJ. Rossky, and R.A. Friesner, “An A Priori Calculation of the Optical Absorption Spectrum of the Hydrated Electron”, Phys. Rev. Letters 60, 456 (1988).

    Article  CAS  Google Scholar 

  22. PJ. Rossky and J.S. Schnitker, “The Hydrated Electron: Quantum Simulation of Structure, Spectroscopy, and Dynamics”, J. Phys. Chem. 92, 4277 (1988).

    Article  CAS  Google Scholar 

  23. T.H. Murphrey and P.J. Rossky, “The Role of Solvent Intramolecular Modes in Excess Electron Solvation Dynamics”, J. Chem. Phys. (in press).

    Google Scholar 

  24. W.-S. Sheu and P.J. Rossky, “Charge-Transfer-to-Solvent Spectra of an Aqueous Halide Revisited via Computer Simulation”, J. Am. Chem. Soc. (in press).

    Google Scholar 

  25. W.-S. Sheu and P.J. Rossky, “The Electronic Dynamics of Photoexcited Aqueous Iodide”, Chem. Phys. Lett. 302, 186 (1993).

    Article  Google Scholar 

  26. W.-S. Sheu and P.J. Rossky, “Dynamics of Electron Photodetachment from an Aqueous Halide Ion”, Phys. Rev. Lett. (submitted for publication).

    Google Scholar 

  27. see, for example, J.C. Mialocq, “La Formation de L’Electron Solvate en Photochimie”, J. Chim. Phys. 85, 31 (1988).

    CAS  Google Scholar 

  28. see, for example, D.F. Calef and P.G. Wolynes, “Smoluchowski-Vlasov theory of charge solvation dynamics”, J. Chem. Phys. 78, 4145 (1983).

    Article  CAS  Google Scholar 

  29. A. Migus, Y. Gauduel, J.L. Martin, and A. Antonetti, “Excess Electron in Liquid Water: First Evidence of a Prehydrated State with Femtosecond Lifetime”, Phys. Rev. Lett. 58, 1559 (1987).

    Article  CAS  Google Scholar 

  30. Summaries of a number of recent measurements are provided in: H. Lu, F.H. Long, and K.B. Eisenthal, “Femtosecond Studies of Electrons in Liquids”, J. Opt. Soc. Am. B 7, 1511 (1990); Y. Gauduel, S. Pommeret, A. Migus, N. Yamada, and A. Antonetti, “Femtosecond investigation of single electron transfer and radical reactions in aqueous media and bioaggregate mimetic systems”, ibid. 7, 1528 (1990).

    Article  CAS  Google Scholar 

  31. F.H. Long, H. Lu, and K.B. Eisenthal, “Femtosecond Studies of the Presolvated Electron: An Excited State of the Solvated Electron?”, Phys. Rev. Letters 64, 1469 (1990).

    Article  CAS  Google Scholar 

  32. E. Keszei, S. Nagy, T.H. Murphrey, and P.J. Rossky, “Kinetic Analysis of Computer Experiments on Electron Hydration Dynamics”, J. Chem. Phys. (submitted for publication).

    Google Scholar 

  33. J. Jortner, M. Ottolenghi, and G. Stein, “On the Photochemistry of Aqueous Solutions of Chloride, Bromide and Iodide Ions”, J. Phys. Chem. 68, 247 (1964).

    Article  CAS  Google Scholar 

  34. F.S. Dainton and S.R. Logan, “Primary processes in the photolysis of the iodide ion in aqueous solution”, Proc. Roy. Soc. (London) A287, 281 (1965).

    Google Scholar 

  35. T.R. Griffiths and M.C.R. Symons, “Solvation Spectra 3. — Further studies of the effect of environmental changes on the ultra-violet spectrum of iodide ions”, Trans. Faraday Soc. 56, 1125 (1960).

    Article  CAS  Google Scholar 

  36. J. Jortner, and A. Treinin, “Intensities of the Absorption Bands of Halide Ions in Solution”, Trans. Faraday Soc. 56, 1503 (1961).

    Google Scholar 

  37. F.H. Long, H. Lu, X. Shi, and K.B. Eisenthal, “Femtosecond studies of electron photodetachment from an iodide ion in solution: the trapped electron”, Chem. Phys. Lett. 169, 165 (1990).

    Article  CAS  Google Scholar 

  38. F.H. Long, Ph. D. Dissertation, Columbia University, 1991; F.H. Long, H. Lu, X. Shi, and K.B. Eisenthal, “Photodetachment from halide ions in solution” (to be published).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Rossky, P.J., Murphrey, T.H., Sheu, WS. (1994). Simulation of Electronic Spectroscopy and Relaxation in Aqueous Solution. In: Jortner, J., Levine, R.D., Pullman, B. (eds) Reaction Dynamics in Clusters and Condensed Phases. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0786-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0786-0_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4337-3

  • Online ISBN: 978-94-011-0786-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics