Skip to main content

Isomerization Reactions at Aqueous Interfaces

  • Conference paper
Reaction Dynamics in Clusters and Condensed Phases

Part of the book series: The Jerusalem Symposia on Quantum Chemistry and Biochemistry ((JSQC,volume 26))

Abstract

In this paper we discuss the transfer of small, flexible molecules across the water-hexane interface. The study is motivated by the biological and pharmacological importance of this process in water-membrane systems. We focus on three main issues: (a) what are the free energy profiles for transferring molecules across the interface, (b) how conformational equilibria at the interface differ from those in the bulk phases, and (c) how the rates of isomerization compare to the rates of transfer across the interface. We investigate these problems by molecular dynamics simulations of two systems — 1,2-dichloroethane and alanine dipeptide. Both molecules exhibit a free energy minimum at the interface. As a consequence, the molecules encounter an apparent “interfacial resistance”, in violation of the solubility-diffusion model. For 1,2-dichloroethane the relaxation time of the isomerization reaction was calculated from the transition state theory and corrected for dynamic effects which included a contribution from quasi-periodic trajectories. This time was found to be much shorter than the lifetime of the solute at the interface, indicating that the conformational equilibrium in this region is readily reached during the transfer. For alanine dipeptide it was found that conformations present in water and in hexane are all populated at the interface, but energy barriers between them are markedly reduced. The description of the transfer across the interface by a simple diffusion model was tested. The model gives satisfactory results for 1,2-dichloroethane but is less accurate for alanine dipeptide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.H. Guy and D.H. Honda (1984), “Solute transport resistance at the octanolwater interface”, Int. J. Pharm. 19, 129–137.

    Article  CAS  Google Scholar 

  2. W.R. Lieb and W.D. Stein (1986), “Non-Stokesian Nature of Transverse Diffusion within Human Red Cell Membranes”, J. Membrane Biol. 92, 111–119.

    Article  CAS  Google Scholar 

  3. M.A. Wilson and A. Pohorille, to be published, see also ref 16.

    Google Scholar 

  4. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, and M.L. Klein (1984), “Comparison of simple potential functions for simulating liquid water”, J. Chem. Phys. 79, 926–935.

    Article  Google Scholar 

  5. M.A. Wilson, A. Pohorille, and L.R. Pratt (1987), “Molecular dynamics of the water liquid-vapor interface”, J. Phys. Chem. 91, 4873–4878.

    Article  CAS  Google Scholar 

  6. M. Wilson and A. Pohorille (1991), “Interaction of monovalent ions with the liquid-vapor interface of water: a molecular dynamics study”, J. Chem. Phys. 95 6005–6013.

    Article  CAS  Google Scholar 

  7. A. Pohorille and I. Benjamin (1991), “Molecular dynamics of phenol at the liquid-vapor interface of water”, J. Chem. Phys. 94, 5599–5605.

    Article  CAS  Google Scholar 

  8. I. Benjamin and A. Pohorille (1993), “Isomerization reaction dynamics and equilibrium at the liquid-vapor interface of water. A molecular dynamics study”, J. Chem. Phys. 98, 236–242.

    Article  CAS  Google Scholar 

  9. W.L. Jorgensen, J.D. Madura and C.J. Swenson (1984), “Optimized intermolecular potential functions for liquid hydrocarbons”, J. Am. Chem. Soc. 106, 6638–6646.

    Article  CAS  Google Scholar 

  10. W.D. Cornell, private communication.

    Google Scholar 

  11. W.D. Cornell, P. Cieplak, C.I. Bayly, and P.A. Kollman (1993), “Applications of RESP charges to calculate conformational energies, hydrogen bond energies and free energies of solvation”, J. Am. Chem. Soc, in press.

    Google Scholar 

  12. M.P. Allen and D.J. Tildesley (1987), Computer Simulations of Liquids, Clarendon Press, Oxford, p 78.

    Google Scholar 

  13. G. Ciccotti and J.P. Ryckaert (1986), “Molecular dynamics simulation of rigid molecules”, Comput. Phys. Rep. 4, 345–392.

    Article  CAS  Google Scholar 

  14. D. Chandler (1987), Introduction to Modern Statistical Mechanics, Oxford Univ. Press, New York, ch 6.3.

    Google Scholar 

  15. A. Pohorille and I. Benjamin (1993), “Structure and energetics of model amphiphilic molecules at the Water liquid-vapor interface. A molecular dynamic study”, J. Phys. Chem. 97, 2664–2670.

    Article  CAS  Google Scholar 

  16. A. Pohorille and M.A. Wilson (1993) “Viepoint: Molecular structure of aqueous interfaces”, J. Mol. Struct. THEOCHEM, in press.

    Google Scholar 

  17. P. Pechukas (1976) in Dynamics of Molecular Collisions; Part B, edited by W.H. Miller, Plenum, New York.

    Google Scholar 

  18. D. Chandler (1978), “Statistical mechanics of isomerization dynamics in liquids and the transition state approximation”, J. Chem. Phys. 68, 2959–2970.

    Article  CAS  Google Scholar 

  19. J.T. Hynes (1984), The Theory of Chemical Reactions, edited by M. Baer,, CRC Press, Boca Raton, FL, Vol 4.

    Google Scholar 

  20. N.G. van Kampen, (1985) Stochastic Proceses in Physics and Chemistry, North Holland, Amsterdam, ch. X.

    Google Scholar 

  21. K.J. Schweighofer and I. Benjamin (1993), “Dynamics of ion desorption from the liquid-vapor interface of water”, Chem. Phys. Lett. 202, 379–383.

    Article  CAS  Google Scholar 

  22. I. Benjamin (1992), “Dynamics of ion transfer across a liquid-liquid“ interface: A comparison between molecular dynamics and a diffusion model”, J. Chem. Phys. 96, 577–585.

    Article  CAS  Google Scholar 

  23. R. Zwanzig (1992), “Diffusion past an entropy barrier”, J. Phys. Chem., 96, 3926–3930.

    Article  CAS  Google Scholar 

  24. P.J. Rossky and M. Karplus (1979), “Solvation. A molecular dynamics study of a dipeptide in water”, J. Am. Chem. Soc. 101, 1913–1937.

    Article  CAS  Google Scholar 

  25. J. Brady and M. Karplus (1985), “Configurational entropy of the alanine dipeptide in vacuum and in solution. A molecular dynamics study”, J. Am. Chem. Soc. 107, 6103.

    Article  CAS  Google Scholar 

  26. G. Ravishanker, M. Mezei and D.L. Beveridge (1986), “Conformational stability of the Ala dipeptide in free space and water: Monte Carlo computer simulation studies”, J. Comput. Chem. 7, 345–348.

    Article  CAS  Google Scholar 

  27. A. Anderson and J. Hermans (1988), “Microfolding: conformational probability map for the alanine dipeptide un water from molecular dynamics simulations”, Proteins 3, 262–273.

    Article  CAS  Google Scholar 

  28. D.J. Tobias and C.L. Brooks (1992), “Conformational equilibrium in the alanine dipeptide in the gas phase and aqueous solution: A comparison of theoretical results”, J. Phys. Chem. 96, 3864–3870.

    Article  CAS  Google Scholar 

  29. B.M. Pettitt and M. Karplus (1985), “The potential of mean force surface for the alanine dipeptide in aqueous solution: A theoretical approach”, Chem. Phys. Lett. 121, 194–201.

    Article  CAS  Google Scholar 

  30. B.M. Pettitt and M. Karplus (1988), “Conformational free energy of hydration for the alanine dipeptide: Thermodynamic analysis”, J. Phys. Chem 92, 3994–3997.

    Article  CAS  Google Scholar 

  31. A. Pohorille, M.A. Wilson and P. Cieplak, to be published.

    Google Scholar 

  32. R.B. Gennis (1989), Biomembranes, Springer, New York, p 242.

    Google Scholar 

  33. E.I. Eger, J. Liu, D. Koblin, M. Halsey and B. Chortkoff (1993), “Molecular properties of the “ideal” anesthetic”, Anesthesia, October 1993, in press.

    Google Scholar 

  34. E.T. Kaiser and F.J. Kezdy (1987) “Peptides with affinity to membranes”, Ann. Rev. of Biophys. Biophys. Chem. 16, 561–582.

    Article  CAS  Google Scholar 

  35. V.M. Knepp and R.H. Guy (1989), “Transport of steroinds at model biomembranes surfaces and across organic liquid-aqueous phase interfaces”, J. Phys. Chem. 93, 6817–6823.

    Article  CAS  Google Scholar 

  36. S.J. Weiner, P.A. Kollman, D.T. Nguyen and D.A. Case (1986), “An all atom force field for simulations of proteins and nucleic acids”, J. Comput. Chem 7, 230–252.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Pohorille, A., Wilson, M.A. (1994). Isomerization Reactions at Aqueous Interfaces. In: Jortner, J., Levine, R.D., Pullman, B. (eds) Reaction Dynamics in Clusters and Condensed Phases. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0786-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0786-0_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4337-3

  • Online ISBN: 978-94-011-0786-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics