Advertisement

The Monk’s Vote: A Dialogue on Unidimensional Probabilistic Geometry

  • Jean-Claude Falmagne
Part of the Synthese Library book series (SYLI, volume 234)

Abstract

In the form of a dialogue between two Renaissance clerics, this paper discusses a number of probabilistic representations for unidimensional geometry, applicable to some behavioral science experiments. The primitives of the theories reflect the empirical situation, which is a case of approval voting. Examples illustrate how critical aspects of the theories are dictated by the specific hypotheses of the researchers: what is meant by ‘unidimensional’ depends upon what the scientist is trying to find out.

Keywords

Adjacent Pair Approval Vote Competence Model Standard Quantum Mechanic Basic Ranking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berge, C. I.: 1968, ‘Principes de combinatoire’ (translated as: Principles of Combinatorics, Academic Press, New York, 1971), Dunod, Paris.Google Scholar
  2. Björner, X.: 1984, ‘Ordering of Coxeter Groups’, Contemporary Mathematics, 34, 175–195.CrossRefGoogle Scholar
  3. Blokland-Vogelsang, A. W. van: 1990, ‘Unfolding and Group Consensus Ranking for Individual Preferences’, Ph.D. dissertation, DSWO Press, University of Leiden, Leiden.Google Scholar
  4. Brams, S. J. and Fishburn, P. C: 1983, Approval Voting, Birkhäuser, Boston.Google Scholar
  5. Coombs, C. H.: 1964, A Theory of Data (Republished in 1976 by MI: Mathesis Press, Ann Arbor), Wiley, New York.Google Scholar
  6. Critchlow, D. E., Fligner, A. F. and Verducci, J. S.: 1991, ‘Probability Models on Ranking’, Journal of Mathematical Psychology, 35, 294–318.CrossRefGoogle Scholar
  7. Eco, U.: 1983, The Name of the Rose, translated from the Italian by William Weaver, Harcourt Brace Jovanovitch, Inc., San Diego.Google Scholar
  8. Feigin, P. D. and Cohen, A.: 1978, ‘On a Model for Concordance between Judges’, Journal of the Royal Statistical Society B, 40, 203–213.Google Scholar
  9. Guilbaud, G. Th. and Rosenstiehl, P.: 1963, ‘Analyse algébrique d’un scrutin’, Mathématiques et Sciences Humaines, 3, 9–33.Google Scholar
  10. Feldman Högaasen, J.: 1969, ‘Ordres partiels et permutohèdre’, Mathématiques et Sciences Humaines, 28, 27–38.Google Scholar
  11. Lacouture, J.: 1991, Jésuites, 1. Les Conquérants, Editions du Seuil, Paris.Google Scholar
  12. Le Conte de Poly-Barbut, C.l.: 1990, ‘Le diagramme du treillis permutohèdre est intersection des diagrammes de deux produits directs d’ordres totaux’, Mathématiques, Informatique et Sciences Humaines, 112, 49–53.Google Scholar
  13. Schneider, E.: 1925, Les Heures Bénédictines, Grasset, Paris.Google Scholar
  14. Suppes, P.: 1991, ‘The Principle of Invariance with Special Reference to Perception’, in: J.-P. Doignon and J.-Cl. Falmagne (Eds.), Mathematical Psychology: Current Developments, Springer-Verlag, New York.Google Scholar
  15. Tucker, A.: 1972, ‘A Structure Theorem for the Consecutive l’s Property’, Journal of Combinatorial Theory, 12(B), 153–162.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Jean-Claude Falmagne
    • 1
  1. 1.Institute for Mathematical Behavioral Sciences, Social Science TowerUniversity of California at IrvineIrvineUSA

Personalised recommendations