Advertisement

Some Connections Between Epistemic Logic and the Theory of Nonadditive Probability

  • Philippe Mongin
Part of the Synthese Library book series (SYLI, volume 234)

Abstract

This paper is concerned with representations of belief by means of nonadditive probabilities of the Dempster-Shafer (D.S.) type. After surveying some foundational issues and results in the D.S. theory, including Suppes’s related contributions, the paper proceeds to analyze the connection of the D.S. theory with some of the work currently pursued in epistemic logic. A preliminary investigation of the modal logic of belief functions à la Shafer is made. Then it is shown that the Alchourrón-Gärdenfors-Makinson (A.G.M.) logic of belief change is closely related to the D.S. theory. The final section compares the critique of Bayesianism which underlies the present paper with some important objections raised by Suppes against this doctrine.

Keywords

Modal Logic Belief Function Epistemic Logic Belief Change Basic Probability Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alchourrón, C. E., Gärdenfors, P., and Makinson, D.: 1985, ‘On the Logic of Theory Change: Partial Meet Functions for Contractions and Revision’, Journal of Symbolic Logic, 50, 510–530.CrossRefGoogle Scholar
  2. Bacchus, F.: 1990, Representing and Reasoning with Probabilistic Knowledge, Cambridge, Mass., MIT Press.Google Scholar
  3. Bogdan, R. J. (Ed.): 1979, Patrick Suppes, Dordrecht, Reidel (Profiles).Google Scholar
  4. Chateauneuf, A. and Jaffray, J. Y.: 1989, ‘Some Characterizations of Lower Probabilities and Other Monotone Capacities Through the Use of Möbius Inversion’, Mathematical Social Sciences, 17, 263–283.CrossRefGoogle Scholar
  5. Chellas, B.: 1980, Modal Logic, Cambridge, Cambridge University Press.Google Scholar
  6. Choquet, G.: 1953-1954, ‘Theory of Capacities’, Annales de l’Institut Fourier, 5, 131–295.CrossRefGoogle Scholar
  7. de Finetti, B.: 1937, ‘La prévision: ses lois logiques, ses sources subjectives’, Annales de l’Institut Henri Poincaré, 7, 1–68.Google Scholar
  8. Dempster, A. P.: 1967, ‘Upper and Lower Probabilities Induced by a Multivalued Mapping’, Annals of Mathematical Statistics, 38, 325–339.CrossRefGoogle Scholar
  9. Dubois, D.: 1988, ‘Possibility Theory: Searching for Normative Foundations’, in: B. Munier (Ed.), Risk, Decision and Rationality, Dordrecht, Reidel, pp. 601–614.CrossRefGoogle Scholar
  10. Dubois, D. and Prade, H.: 1985, Théorie des possibilités, Paris, Masson.Google Scholar
  11. Dubois, D. and Prade, H.: 1991, ‘Epistemic Entrenchment and Possibilistic Logic’, Artificial Intelligence, 50, 223–239.CrossRefGoogle Scholar
  12. Dubois, D. and Prade, H.: 1992, ‘A Glance at Non-Standard Models and Logics of Uncertainty and Vagueness’, to appear in: J.P. Dubucs (Ed.), Philosophy of Probability, Dordrecht, Kluwer Academic Publishers.Google Scholar
  13. Dubucs, J.: 1992, ‘Omniscience logique et frictions cognitives’, in: D. Andler et al. (Eds.), Epistimologie et Cognition, Liège, Mardaga, pp. 115–131.Google Scholar
  14. Fagin, R., Halpern, J. Y, and Vardi, M. Y: 1984, ‘A Model-Theoretic Analysis of Knowledge’, Proceedings of the 25th Annual IEEE Symposium on Foundations of Computer Science, pp. 268–278.Google Scholar
  15. Gärdenfors, P.: 1988, Knowledge in Flux, Cambridge, Mass., MIT Press.Google Scholar
  16. Gärdenfors, P. and Makinson, D.: 1988, ‘Revisions of Knowledge Systems Using Epistemic Entrenchment’, in: M.Y Vardi (Ed.), Proceedings of the Second Conference on Theoretical Aspects of Knowledge Representations, Los Altos, Ca., Morgan Kaufmann.Google Scholar
  17. Gilboa, I.: 1987, ‘Expected Utility Theory with Purely Subjective Non-Additive Probabilities’, Journal of Mathematical Economics, 16, 65–88.CrossRefGoogle Scholar
  18. Good, I. J.: 1962, ‘Subjective Probability as the Measure of a Non-Measurable Set’, in: E. Nagel, P. Suppes, and A. Tarski (Eds.), Logic, Methodology and Philosophy of Science, Stanford, Stanford University Press.Google Scholar
  19. Jaffray, J. Y.: 1989a, ‘Coherent Bets under Partially Resolving Uncertainty and Belief Functions’, Theory and Decision, 26, 99–106.CrossRefGoogle Scholar
  20. Jaffray, J. Y.: 1989b, ‘Généralisation du critère de l’utilité espérée aux choix dans l’incertain régulier’, Recherche opérationnelle/Opérations Research, 23, 237–267.Google Scholar
  21. Jaffray, J. Y: 1991, ‘Belief Functions, Convex Capacities, and Decision Making’, in: J. P. Doignon and J. C. Falmagne (Eds.), Mathematical Psychology: Current Developments, New York, Springer.Google Scholar
  22. Keynes, J. M.: 1921, A Treatise on Probability, London, MacMillan.Google Scholar
  23. Kraft, C. H., Pratt, J. W., and Seidenberg, A.: 1959, ‘Intuitive Probability on Finite Sets’, Annals of Mathematical Statistics, 30, 408–419.CrossRefGoogle Scholar
  24. Krantz, D. H., Luce, R. D., Suppes, P., and Tversky, A.: 1971, Foundations of Measurement, Vol. 1, New York, Academic Press.Google Scholar
  25. Kyburg, H. E. Jr.: 1987, ‘Bayesian and Non-Bayesian Evidential Updating’, Artificial Intelligence, 31, 271–293.CrossRefGoogle Scholar
  26. Levi, I.: 1984, Hard Choices, Cambridge, Cambridge University Press.Google Scholar
  27. Lismont, L.: 1992, ‘La connaissance commune: approches modale, ensembliste et probabiliste’, Doctoral Thesis, Université Catholique de Louvain.Google Scholar
  28. Luce, R. D.: 1979, ‘Suppes’ Contributions to the Theory of Measurement’, in: R. J. Bogdan (Ed.), Patrick Suppes, pp. 93–110.Google Scholar
  29. Mongin, P.: 1991, ‘Une interprétation logique du théorème de Mertens-Zamir’, mimeo.Google Scholar
  30. Mongin, P.: 1992, ‘The Logic of Belief Change and Nonadditive Probability’, CORE Discussion Paper No. 9075 (revised version as of March 1992).Google Scholar
  31. Savage, L. J.: 1954, The Foundations of Statistics, New York, Dover (2nd ed., 1972).Google Scholar
  32. Schmeidler, D.: 1986, ‘Integral Representations without Additivity’, Proceedings of the American Mathematical Society, 97, 253–261.CrossRefGoogle Scholar
  33. Schmeidler, D.: 1989, ‘Subjective Probability and Expected Utility Without Additivity’, Econometrica, 57, 571–587.CrossRefGoogle Scholar
  34. Shackle, G. L. S.: 1949, Expectations in Economics, Cambridge, Cambridge University Press (2nd ed. 1952).Google Scholar
  35. Shackle, G. L. S.: 1961, Decision, Order and Time in Human Affairs, Cambridge, Cambridge University Press (2nd ed., 1969).Google Scholar
  36. Shafer, G.: 1976, A Mathematical Theory of Evidence, Princeton, Princeton University Press.Google Scholar
  37. Shafer, G. and Tversky, A.: 1985, ‘Languages and Designs for Probability Judgment’, Cognitive Science, 9. Also in G. Shafer and J. Pearl (1990) (Eds.), pp. 40-54.Google Scholar
  38. Shafer, G. and Pearl, J. (Eds.): 1990, Readings in Uncertain Reasoning, San Mateo, Morgan Kaufmann Publishers.Google Scholar
  39. Shapley, L. S.: 1971, ‘Core of Convex Games’, International Journal of Game Theory, 1, 11–26.CrossRefGoogle Scholar
  40. Smets, P.: 1988, ‘Belief Functions’, in: P. Smets et al., Non-Standard Logics for Automated Reasoning, pp. 253–277.Google Scholar
  41. Smets, P., Mamdani, A., Dubois, D., and Prade, H. (Eds.): 1988, Non-Standard Logics for Automated Reasoning, New York, Academic Press.Google Scholar
  42. Smith, C. A. B.: 1961, ‘Consistency in Statistical Inference and Decision’, Journal of the Royal Statistical Society, Series B, 23, 1–37.Google Scholar
  43. Spohn, W.: 1987, ‘Ordinal Conditional Functions: A Dynamic Theory of Epistemic States’, in: W. L. Harper and B. Skyrms (Eds.), Causation in Decision, Belief Change, and Statistics, Dordrecht, Reidel, Vol. 2, pp. 105–134.Google Scholar
  44. Suppes, P.: 1966, ‘Concept Formation and Bayesian Decisions’, in J. Hintikka and P. Suppes (Eds.), Aspects of Inductive Logic, Amsterdam, North Holland, pp. 21–48.CrossRefGoogle Scholar
  45. Suppes, P.: 1969, Studies in the Methodology and Foundations of Science, New York, Humanities Press.Google Scholar
  46. Suppes, P.: 1974, ‘The Measurement of Belief’, Journal of the Royal Statistical Society, Series B, 36, 160–175.Google Scholar
  47. Suppes, P.: 1979, ‘Self Portrait’, in: R. J. Bogdan (Ed.), Patrick Suppes.Google Scholar
  48. Suppes, P.: 1981, La logique du probable, Paris, Flammarion.Google Scholar
  49. Suppes, P.: 1984, Probabilistic Metaphysics, Oxford, Blackwell. (First version published by the Philosophical Society and the Department of Philosophy, University of Uppsala, 1974.)Google Scholar
  50. Suppes, P. and Zanotti, M.: 1976, ‘Necessary and Sufficient Conditions for Existence of a Unique Measure Strictly Agreeing with a Qualitative Probability Ordering’, Journal of Philosophical Logic, 5, 431–438.Google Scholar
  51. Suppes, P. and Zanotti, M.: 1977, ‘On Using Random Relations to Generate Upper and Lower Probabilities’, Synthese, 36, 427–440.CrossRefGoogle Scholar
  52. Suppes, P. and Zanotti, M.: 1989, ‘Conditions on Upper and Lower Probabilities to Imply Probabilities’, Erkenntnis, 31, 323–345.CrossRefGoogle Scholar
  53. Vardi, M.: 1986, ‘On Epistemic Logic and Logical Omniscience’, in: J. Y. Halpern (Ed.), Theoretical Aspects of Reasoning About Knowledge, Los Altos, Ca., Morgan Kaufmann.Google Scholar
  54. Wakker, P.: 1989, ‘Continuous Subjective Expected Utility with Non-Additive Probabilities’, Journal of Mathematical Economics, 18, 1–27.CrossRefGoogle Scholar
  55. Walliser, B.: 1991, ‘Belief Revision and Decision under Complex Uncertainty’, in: B. Walliser and P. Bourgine (Eds.), Economics and Cognitive Science, New York, Pergamon Press.Google Scholar
  56. Wong, S. K. M., Yao, Y. Y, Bollmann, P., and Bürger, H.C.: 1991, ‘Axiomatization of Qualitative Belief Structure’, IEEE Transactions on Systems, Man, and Cybernetics, 21, 726–734.CrossRefGoogle Scholar
  57. Zadeh, L. A.: 1978, ‘Fuzzy Sets as a Basis for a Theory of Possibility’, Fuzzy sets and Systems, 1, 3–28.CrossRefGoogle Scholar

References

  1. Kraft, C. H., Pratt, J. W., and Seidenberg, A.: 1959, ‘Intuitive Probability on Finite Sets’, Annals of Mathematical Statistics, 30, 408–419.CrossRefGoogle Scholar
  2. Scott, D.: 1964, ‘Measurement Models and Linear Inequalities’, Journal of Mathematical Psychology, 1, 233–247.CrossRefGoogle Scholar
  3. Suppes, P. and Zanotti, M.: 1976, ‘Necessary and Sufficient Conditions for Existence of a Unique Measure Strictly Agreeing with a Qualitative Probability Ordering’, Journal of Philosophical Logic, 5, 431–438.Google Scholar
  4. Walley, P. and Fine, T. L.: 1979, ‘Varieties of Modal (Classicatory) and Comparative Probability’, Synthese, 41, 321–374.CrossRefGoogle Scholar
  5. Wong, S. K. M., Yao, Y. Y, Boltmann, P., and Bürger, H. C: 1991, ‘Axiomatization of Qualitative Belief Structure’, IEEE Transactions on Systems, Man, and Cybernetics, 21(4), 726–734.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Philippe Mongin
    • 1
  1. 1.Center for Operation Research and Econometrics (CORE)Université Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations