Skip to main content

The function and regulation of genes required for extracellular polysaccharide synthesis and virulence in Pseudomonas solanacearum

P. solanacearum extracellular polysaccharide

  • Chapter
Molecular Mechanisms of Bacterial Virulence

Part of the book series: Developments in Plant Pathology ((DIPP,volume 3))

Abstract

In the bacterial wilt pathogen Pseudomonas solanacearum wild-type level of virulence requires the production of extracellular polysaccharide (EPS). However the structure of EPS and the regulation of its production in P. solanacearum are poorly understood. To determine the function of EPS genes we have extensively characterized the ops gene cluster. Mutations in any of the seven complementation units of this cluster not only affect EPS production but also the structure of lipopolysaccharide (LPS). Furthermore one of the complementation units appears to encode enzymes responsible for the synthesis of rhamnose a component of LPS and EPS. To better understand regulation of EPS production we characterized epsR a regulatory locus whose product prevents EPS production and affects virulence. The epsR gene encodes a polypeptide of about 26 kDa whose sequence contains conserved motifs found in several previously identified bacterial regulatory proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

EPS:

Extracellular Polysaccharide

LPS:

Lipopolysaccharide

wt:

Wild-Type

GalNac:

N-acetyl Galactosamine

References

  1. Akiyama Y., Eda S., Nishikamaji S., Tanaka H., and Ohnishi A. 1986. Extracellular polysaccharide produced by a virulent strain (U-7) of Pseudomonas solanacearum. Ann. Phytopathol. Soc. Japan. 52: 741–744.

    Article  CAS  Google Scholar 

  2. Allen C., Huang Y., and Sequeira L. 1991. Cloning of genes affecting polygalacturonase production in Pseudomonas solanacearum polygalacturonase. Mol. Plant. Microbe Interact. 4: 147–154.

    Article  CAS  Google Scholar 

  3. Arico O.B., Miller J.F., Roy C., Stibitz S., Monack D., Falkow S., Gross S., and Rappouli R. 1989. Sequences required for the expression of Bordetella pertussis virulence factors share homology with procaryotic signal transduction proteins. Proc. Nat. Acad. Sci. USA 86: 6671–6675.

    Article  PubMed  CAS  Google Scholar 

  4. Ayers A.R., Ayers S.B.,and Goodman R.N., 1979. Extracellular polysaccharides of Erwinia amylovora: a correlation with virulence. Appl. Environ. Microbiol. 138: 659–666.

    Google Scholar 

  5. Baker J.M., Neilson J., Sequeira L., and Keegstra K. G. 1984. Chemical characterization of the lipopolysaccharide of Pseudomonas solancearum. Appl. Environ. Microbiol. 47: 1096–1100.

    PubMed  CAS  Google Scholar 

  6. Boucher C.A., Gough C.L., and Arlat M. 1992. Molecular genetics of pathogenicity determinants of Pseudomonas solanacearum with special emphasis on HRP genes. Annu. Rev. Phytopathol. 30: 443–461.

    Article  CAS  Google Scholar 

  7. Boucher C.A., Barberis P.A., and Arlet M. 1988. Acridine orange selects for deletions of hrp genes in all races of Pseudomonas solanacearum. Mol. Plant Microbe Interact. 1: 232–238.

    Article  Google Scholar 

  8. Boucher C.A., Van Gijsegem F., Barberis P.A., Arlat M., and Zischek C. 1987. Pseudomonas solanacearum genes controlling both pathogenicity on tomato and hypersensitivity on tobacco are clustered. J. Bacteriol. 169: 5626–5632.

    PubMed  CAS  Google Scholar 

  9. Brumbley S.M. and Denny T.P. 1990. Cloning of wild-type Pseudomonas solanacearum phcA a gene that when mutated alters expression of multiple traits that contribute to virulence. J. Bacteriol. 172: 5677–5685.

    PubMed  CAS  Google Scholar 

  10. Buddenhagen I. and Kelman A. 1964. Biological and physiological aspects of bacterial wilt caused by Pseudomonas solanacearum. Annu. Review Phytopathol. 2: 203–230.

    Article  Google Scholar 

  11. Cole S.T. and Raibaud O. 1986. The nucleotide sequence of the malTgene encoding the positive regulator of the Escherichia coli maltose regulon. Gene 42: 201–208.

    Article  PubMed  CAS  Google Scholar 

  12. Collins L.V. and Hackett J. 1991. Molecular cloning characterization and nucleotide sequence of the rfc gene which encodes an O-antigen polymerase of Salmonella typhimurium. J. Bacteriol. 173:2521–2529.

    PubMed  CAS  Google Scholar 

  13. Cook D. and Sequeira L. 1991. Genetic and biochemical characterization of a gene cluster from Pseudomonas solanacearum required for extracellular polysaccharide production and for virulence. J. Bacteriol. 173: 1654–1662.

    PubMed  CAS  Google Scholar 

  14. Coplin D.L. and Cook D. 1990. Molecular genetics of extracellular polysaccharide biosynthesis in vascular phytopathogenic bacteria. Mol. Plant-Microbe Interact. 3: 271–279.

    Article  PubMed  CAS  Google Scholar 

  15. Crowell D.N., Reznikoff W.S., and Raetz C.R. 1987. Nucleotide sequence of the Escherichia coli gene for lipid A disaccharide synthase. J. Bacteriol. 169: 5727–5734.

    PubMed  CAS  Google Scholar 

  16. Daniels M.J., Osbourn A.E., and Tang J.L. 1989. Regulation in Xanthomonas-plant interactions p. 189–196. In: B. J. J. Lugtenberg (ed.) Signal Molecules in Plants and Plant-Microbe Interactions. NATO ASI Series Vol. H36. Springer-Verlag, Berlin.

    Google Scholar 

  17. David M., et al. 1988. Cascade regulation of nifgene expression in Rhizobium meliloti. Cell 54: 671–683.

    Article  PubMed  CAS  Google Scholar 

  18. Denny T.D., Makini F.W., and Brumbley S.M. 1988. Characterization of Pseudomonas solanacearum Tn5 mutants deficient in extracellular polysaccharide. Mol. Plant-Microbe Interact. 1: 215–223.

    Article  Google Scholar 

  19. Denny T.P. and Baek S.R. 1991. Genetic evidence that extracellular polysaccharide is a virulence factor of Pseudomonas solanacearum. Mol. Plant-Microbe Interact. 4: 198–206.

    Article  CAS  Google Scholar 

  20. Deteric V., Konyecsni W.M., Mohr C.D., Martin D.W., and Hibler N.S. 1989a. Common denominators of promoter control in Pseudomonas and other bacteria. Biotechnology 7: 1249–1254.

    Google Scholar 

  21. Deteric V., Dikshit R., Konyecsni W.M., Chakrabarty A.M., and Mista T.K. 1989b. The algR gene which regulates mucoidy in Pseudomonas aeruginosa belongs to a class of environmentally responsive genes. J. Bacteriol. 171: 1278–1283.

    Google Scholar 

  22. Devereux J., Haeberli P., and Smithies O. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucl. Acids Res. 12: 387–395.

    Article  CAS  Google Scholar 

  23. Djordjevic S.P., Chen H., Redmond J.W., and Rolfe B. 1987. Nitrogen-fixing ability of exopolysaccharide synthesis mutants of Rhizobium sp. strain NGR234 and R. trifolii by the addition of homologous exopolysaccharide. J. Bacteriol. 169: 53–60.

    PubMed  CAS  Google Scholar 

  24. Drigues P., Demmery-Laffergue D., Trigalet A., Dupin P., Samain D., and Asselineau J. 1985. Comparative studies of lipopolysaccharide and exopolysaccharide from a virulent strain of Pseudomonas solanacearum and from three avirulent mutants. J. Bacteriol. 172: 504–509.

    Google Scholar 

  25. Duvick J.P. and Sequeira L. 1984. Interaction of Pseudomonas solanacearum lipopolysaccharide with an agglutinin from potato tubers. Appl. Environ. Microbiol. 48: 192–198.

    PubMed  CAS  Google Scholar 

  26. Eggink G., Engel H., Vriend G., Terpstra P., and Witholt B. 1990. Rubredoxin reductase of Pseudomonas oleovorans. Structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD fingerprints. J. Mol. Biol. 212: 135–142.

    Article  PubMed  CAS  Google Scholar 

  27. Engebrecht J. and Silverman M. 1987. Nucleotide sequence of the regulatory locus controlling expression of bacterial genes for bioluminescence. Nucl. Acids Res. 15: 10455–10467.

    Article  PubMed  CAS  Google Scholar 

  28. Ferris F.G. and Beveridge T.J. 1985. Functions of bacterial cell surface structures. BioScience 35:172–177.

    Article  Google Scholar 

  29. Friedrich M.J. and Kadner R.J. 1987. Nucleotide sequence of the uhp region of Escherichia coli. J. Bacteriol. 169: 3556–3563.

    PubMed  CAS  Google Scholar 

  30. Gray J.X. and Rolfe B.G. 1990. Exopolysaccharide production in Rhizobium and its role in invasion. Mol. Microbiol. 4: 1425–1431.

    Article  PubMed  CAS  Google Scholar 

  31. Gray J.X., Djordjevic M.A., and Rolfe B.G. 1990. Two genes that regulate exopolysaccharide production in Rhizobium sp. strain NGR234; DNA sequences and resultant phenotypes. J. Bacteriol. 172: 193–203.

    PubMed  CAS  Google Scholar 

  32. Gross R., Arico B., and Pappuoli R. 1989. Families of bacterial signal-transducing proteins. Mol. Microbiol. 3: 1661–1667.

    Article  PubMed  CAS  Google Scholar 

  33. Gunzalus R.P., Kalman L.V., and Stemart R.R. 1989. Nucleotide sequence of the narL gene that is involved in global regulation of nitrate controlled respiratory genes of Escherichia coli. Nucl. Acids Res. 17: 1965–1975.

    Article  Google Scholar 

  34. Hayward A.C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29: 65–87.

    Article  PubMed  CAS  Google Scholar 

  35. Hendrick C.A. and Sequeira L. 1984. Lipopolysaccharide-defective mutants of the wilt pathogen Pseudomonas solanacearum. Appl. Environ. Microbiol. 48: 94–101.

    PubMed  CAS  Google Scholar 

  36. Henner D.J., Yang M., and Ferrari E. 1988. Localization of Bacilus subtilis sacU (Hy) mutations to two linked genes with similarities to the conserved procaryotic family of two-component signaling systems. J. Bacteriol. 170: 5102–5109.

    PubMed  CAS  Google Scholar 

  37. Hoiseth S., Connelly C.J., and Moxon R. 1985. Genetics of high frequency loss of β capsule expression in Haemophilus influenza. Infect. Immun. 49: 389–395.

    PubMed  CAS  Google Scholar 

  38. Huang Y. and Sequeira L. 1990. Identification of a locus that regulates multiple functions in Pseudomonas solanacearum. J. Bacteriol. 172: 4728–4731.

    PubMed  CAS  Google Scholar 

  39. Husain A. and Kelman A. 1958. Relation of slime production to mechanism of wilting and pathogenicity of Pseudomonas solanacearum. Phytopathol. 48: 155–164.

    Google Scholar 

  40. Jiang X.M., Neal B., Santiago F., Lee S.J., Romana L.K., and Reeves P.R. 1991. Structure and sequence of the rfb (O antigen) gene cluster of Salmonella serovar typhimurium (strain LT2). Molec. Microbiol. 5: 695–713.

    Article  CAS  Google Scholar 

  41. Kamoun C., Cooley M.B., Rogowsky P.M., and Kado C.I. 1989. Two chromosomal loci involved in the production of exopolysaccharide in Agrobacterium tumefaciens. J. Bacteriol. 171: 1755–1759.

    PubMed  CAS  Google Scholar 

  42. Kao C., Gosti F., Huang Y., and Sequeira L. Characterization of a negative regulator of exopolysaccharide production in the plant pathogenic bacterium, Pseudomonas solanacearum. (submitted to Mol. Plant-Microbe Interact.).

    Google Scholar 

  43. Kao C., Barlow E., and Sequeira L. 1992. Extracellular polysaccharide is required for wildtype virulence of Pseudomonas solanacearum. J. Bacteriol. 174: 1068–1071.

    PubMed  CAS  Google Scholar 

  44. Kao C. and Sequeira L. 1991. A gene cluster required for the coordinated biosynthesis of both lipopolysaccharides and exopolysaccharide also affects virulence of Pseudomonas solanacearum. J. Bacteriol. 173: 7841–7848.

    PubMed  CAS  Google Scholar 

  45. Kelman A. 1954. The relationship of pathogenicity of Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44: 693–695.

    Google Scholar 

  46. Kern S.E., Kinzler K.W., Bruskin A., Jarosz D., Friedman P., Prives C., and Vogelstein B. 1991. Identification of p53 as a specific DNA binding protein. Science 252: 1708–1711.

    Article  PubMed  CAS  Google Scholar 

  47. Leigh J.A., Signer E.R., and Walker G.C. 1985. Exopolysaccharide deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc. Natl. Acad. Sci. USA 82: 6231–6235.

    Article  PubMed  CAS  Google Scholar 

  48. Lozano J.C. and Sequeira L. 1970. Differentiation of races of Pseudomonas solanacearum by a leaf infiltration technique. Phytopathol. 60: 833–838.

    Article  Google Scholar 

  49. Makela P.H., Bradley D.J., Brandis H., Frank M.M., Hahn H., Henke L.W., Jann K., Morse S.A., Robbins J.B., Rosenstreich D.L., Smith H., and Timmis K. 1980. Evasion of host-defenses. Group report. In: Smith H. Skehel J.J. and Turner M.J. (ed). The Molecular Basis of Pathogenicity. Verlag Chenie Weinheim.

    Google Scholar 

  50. Makela P.H. and Stocker B.A.D. 1984. Genetics of Lipopolysaccharide. In E.T. Rietschel (ed). The chemistry of endotoxin p. 59–137. Elsevier Biomedical Press New York.

    Google Scholar 

  51. Maramatsu S. and Mixuno T. 1990. Nucleotide sequence of the region encompassing the int gene of a cryptic prophage and the dna Y gene flanked by a curved DNA sequence of Escherichia coli K12. Mol. Gen. Genet. 220: 325–328.

    Google Scholar 

  52. Moolenaar G.F., Van Sluis C.A., Backendorf C., and Van de Putte P. 1987. Regulation of the Escherichia coli excision repair gene uvrC. Overlap between the uvrC structural gene and the region coding for a 24 kDa protein. Nucl. Acids Res. 15: 4273–4289.

    Article  PubMed  CAS  Google Scholar 

  53. Nohno T., Noji S., Taniguchi S., and Saito T. 1989. The narX and narL genes encoding the nitrate-sensing regulator of Escherichia coli are homologous to a family of procaryotic two-component regulatory genes. Nucl. Acids Res. 17: 2947–2957.

    Article  PubMed  CAS  Google Scholar 

  54. Orgambide G., Montrozier H., Servin P., Roussel J., Demery D., and Trigalet A. 1991. High heterogenity of the exopolysaccharides of Pseudomonas solanacearum and the complete structure of the major polysaccharide. J. Biol. Chem. 266: 8312–8321.

    PubMed  CAS  Google Scholar 

  55. Osbourn A.E., Clarke B.R., Stevens B.J.B., and Daniels M.J. 1990. Use of oligonucleotide probes to identify members of two-component regulatory systems in Xanthomonas campestris pathovar campestris. Mol. Gen. Genet. 222: 145–151.

    PubMed  CAS  Google Scholar 

  56. Pearson W.R. and Lipman D.J. 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85: 2444–2448.

    Article  PubMed  CAS  Google Scholar 

  57. Phelps R.H. and Sequeria L. 1968. Auxin biosynthesis in a host-parasite complex. pp. 197–212. In: F. Wightman and G.D. Setterfield (ed). “Biochemistry and Physiology of Plant Growth Substances”. Runge Press Ottawa.

    Google Scholar 

  58. Schell M.A., Roberts D.P., and Denny T.P. 1987. Analysis of the spontaneous mutation to avirulence by Pseudomonas solanacearum. p. 61–66. In: D.P.S. Verma and N. Brisson (ed.). “Molecular Genetics of Plant Microbe Interaction” Proc. 3rd. Intl. Symp. Martinus Nijhoff The Netherlands.

    Google Scholar 

  59. Sequeira L. and Graham T.L. 1977. Agglutination of avirulent strains of Pseudomonas solanacearum by potato lectin. Physiol. Plant Pathol. 11: 43–54.

    Article  CAS  Google Scholar 

  60. Stemmer W.P.C. and Sequeria. L. 1987. Fimbriae of phytopathogenic and symbiotic bacteria. Phytopath. 77: 1633–1639.

    Article  CAS  Google Scholar 

  61. Stock J.B., Ninfa A.J., and Stock A. 1989. Protein phosphorylation and regulation of adaptative responses in bacteria. Microb. Revs. 53: 450–490.

    CAS  Google Scholar 

  62. Stout V., Torres-Cabassa A., Maurizi M.R., Gutnick D., and Gottesman S. 1991. RcsA an unstable positive regulator of capsular polysaccharide synthesis. J. Bacteriol. 173: 1738–1747.

    PubMed  CAS  Google Scholar 

  63. Stout V. and Gottesman S. 1990. RcsB and RcsC: a two-component regulator of capsule synthesis in Escherichia coli. J. Bacteriol. 172: 659–669.

    PubMed  CAS  Google Scholar 

  64. Tang J.L., Gough C.L., and Daniels M.J. 1990. Cloning of genes involved in negative regulation of production of extracellular enzymes and polysaccharides of Xanthomonas campestris pathovar campestris. Mol. Gen. Genet. 222: 157–160.

    PubMed  CAS  Google Scholar 

  65. Van Alfen N.K. 1982. Wilts: concepts and mechanisms p. 459–474. In: M.S. Mount and G.H. Lacy (ed.). Phytopathogenic Procaryotes. Vol. 1. Academic Press. Inc. (London). Ltd., London.

    Chapter  Google Scholar 

  66. Van Alfen N.K., McMillan B.D., Turner V., and Hess W.M. 1983. Role of pit membranes in macromolecular-induced wilt of plants. Plant Physiol. 73: 1020–1023.

    Article  PubMed  Google Scholar 

  67. Verma N.K. and Reeves P.R. 1989. Identification and sequence of rfbS and rfbE which determines antigenic specificity of group A and group D Salmonella. J. Bacteriol. 171: 5694–5701.

    PubMed  CAS  Google Scholar 

  68. Weinrauch Y., Guillen N., and Dubnau D.A. 1989. Sequence and transcription mapping of Bacillus sub tilis competence genes comA and comB one of which is related to a family of bacterial regulatory determinants. J. Bacteriol. 171: 5362–5375.

    PubMed  CAS  Google Scholar 

  69. Xu P., Leong S, and Sequeira L. 1988. Molecular cloning of genes that specify virulence in Pseudomonas solanacearum. J. Bacteriol. 170: 617–622.

    PubMed  CAS  Google Scholar 

  70. Xu P., Iwata M., Leong S., and Sequeira L. 1990. Highly virulent strains of Pseudomonas solanacearum that are defective in extracellular polysaccharide production. J. Bacteriol. 172: 3946–3951.

    PubMed  CAS  Google Scholar 

  71. Young D.H. and Sequeira L. 1986. Binding of Pseudomonas solanacearum fimbriae to tobacco leaf cell walls and its inhibition by bacterial extracellular polysaccharides. Physiol. Mol. Plant Pathol. 28: 393–402.

    Article  CAS  Google Scholar 

  72. Zhan H. and Leigh J.A. 1990. Two genes that regulate exopolysaccharide production in Rhizobium meliloti. J. Bacteriol. 172: 5254–5259.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kao, C.C., Sequeira, L. (1994). The function and regulation of genes required for extracellular polysaccharide synthesis and virulence in Pseudomonas solanacearum . In: Kado, C.I., Crosa, J.H. (eds) Molecular Mechanisms of Bacterial Virulence. Developments in Plant Pathology, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0746-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0746-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4322-9

  • Online ISBN: 978-94-011-0746-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics