Skip to main content

Abstract

Surface reactions play a critical role in the behaviour and properties of clays and, as a result, many experimental and theoretical approaches have been developed for the physical and physico-chemical description of the interfacial regions involved in these reactions. These include measurements of the physical extent (specific surface area) and the topography of interfaces (porosity and surface roughness) using low-temperature gas adsorption methods, water vapour adsorption and mercury intrusion porosimetry (Gregg and Sing, 1982). The physico-chemical methods include the measurement of ion-exchange phenomena (Sposito, 1990) and the development of complex computer-based models of interfacial regions, whose properties are defined on the basis of a series of thermodynamic descriptors (Davis and Kent, 1990). Fewer methods are available for direct chemical and structural characterization of the clay surface, yet, in order to describe the mechanism of surface-controlled reactions on a molecular level and to validate mathematical models of interfacial reactions, direct measurements are required. Against this background, the development and application of highly surface-specific methods, such as photoelectron spectroscopy, has come at an opportune time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J. M. and Evans, S. (1979) Exchange and selective surface uptake of cations by layered silicates using X-ray photoelectron spectroscopy (XPS). Clay Minerals, 27, 248–252.

    Article  Google Scholar 

  • Adams, J. M., Evans, S., Reid, P. I. et al. (1977) Quantitative analysis of aluminosilicate and other solids by X-ray photoelectron spectroscopy. Analytical Chemistry, 49, 2001–2008.

    Article  Google Scholar 

  • Allen, G. C., Curtis, M. T., Hooper, A. J. and Tucker, P. M. (1974) X-ray photoelectron spectroscopy of iron—oxygen systems. Journal of the Chemical Society, Dalton Transactions, 1974, 1525–1530.

    Article  Google Scholar 

  • Alvarez, R., Fadley, C. S., Silva, J. A. and Uehara, G. (1976) A study of silicate adsorption on gibbsite (Al(OH)3) by X-ray photoelectron spectroscopy (XPS). Soil Science Society of America, Journal, 40, 615–617.

    Article  Google Scholar 

  • Antony, M. T. (1983) Spectrometer calibration, in Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (eds D. Briggs and M. P. Seah). Wiley, Chichester, pp. 429–435.

    Google Scholar 

  • Bancroft, G. M., Brown, J. R. and Fyfe, W. S. (1977) Calibration studies for quantitative X-ray photoelectron spectroscopy of ions. Analytical Chemistry, 49, 1044–1048.

    Article  Google Scholar 

  • Barrie, A. (1977) Instrumentation for electron spectroscopy, in Handbook of X-ray and Photoelectron Spectroscopy (ed. D. Briggs). Heyden, London, pp. 79–119.

    Google Scholar 

  • Briggs, D. and Seah, M. P. (1983) Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy. Wiley, Chichester.

    Google Scholar 

  • Brisk, M. A. and Baker, A. D. (1975) Shake-up satellites in X-ray photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 7, 197–213.

    Article  Google Scholar 

  • Brûlé, D. G., Brown, J. R., Bancroft, G. M. and Fyfe, W. S. (1980) Cation adsorption by hydrous manganese dioxide: a semi-quantitative X-ray photoelectron spectroscopic (ESCA) study. Chemical Geology, 28, 331–339.

    Article  Google Scholar 

  • Casey, W. H. and Bunker, B. (1990) Leaching of mineral and glass surfaces during dissolution, in Reviews in Mineralogy, Vol. 23, Mineral—Water Interface Geochemistry, (eds M. F. Hochella and A. R. White). Mineralogical Society of America, Washington, DC, pp. 397–426.

    Google Scholar 

  • Cazaux, J., Mouze, D. and Perrin, J. (1982) Scanning X-ray radiography: first tests in an electron spectrometer. Journal of Applied Physics, 53, 3299–3302.

    Article  Google Scholar 

  • Connor, J. A. (1977) XPS studies of inorganic and organo-metallic compounds, in Handbook of X-ray and Photoelectron Spectroscopy (ed. D. Briggs). Heyden, London, pp. 183–209.

    Google Scholar 

  • Davis, J. A. and Kent, D. B. (1990) Surface complexation modelling in aqueous geochemistry, in Reviews in Mineralogy, Vol. 23, Mineral—Water Interface Geochemistry, (eds M. F. Hochella and A. R. White). Mineralogical Society of America, Washington, DC, pp. 177–260.

    Google Scholar 

  • Davison, N., McWhinnie, W. R. and Hooper, A. (1991) X-ray photoelectron spectroscopic study of cobalt(II) and nickel(II) sorbed on hectorite and montmorillonite. Clays and Clay Minerals, 39, 22–27.

    Article  Google Scholar 

  • Defosse, C. and Rouxhet, P. G. (1981) Introduction to X-ray photoelectron spectroscopy, in Advanced Chemical Methods for Soil and Clay Mineral Research (eds J. W. Stucki and W. L. Banwart). Reidel, Dordrecht, pp. 169–203.

    Google Scholar 

  • Dillard, J. G., Crowther, D. L. and Murray, J. W. (1982) The oxidation state of cobalt and selected metals in Pacific ferromanganese nodules. Geochimica et Cosmochimica Acta, 46, 755–759.

    Article  Google Scholar 

  • Dillard, J. G., Crowther, D. L. and Calvert, S. E. (1984) X-ray photoelectron spectroscopic study of ferromanganese nodules: chemical speciation for selected transition metals. Geochimica et Cosmochimica Acta, 48, 1565–1569.

    Article  Google Scholar 

  • Dillard, J. G., Koppelman, M. H., Crowther, D. L. et al.(1981) X-ray photoelectron spectroscopy (XPS) studies on the chemical nature of metal ions adsorbed on clays and minerals, in Adsorption from Aqueous Solutions (ed. P. H. Tewari). Plenum, New York, pp. 227–240.

    Chapter  Google Scholar 

  • Evans, S. (1977) Energy calibration in photoelectron spectroscopy, in Handbook of X-ray and Photoelectron Spectroscopy (ed. D. Briggs). Heyden, London, pp. 121–151.

    Google Scholar 

  • Evans, S. and Raftery, E. (1980) X-ray photoelectron studies of titanium in biotite and phlogopite. Clay Minerals, 15, 209–218.

    Article  Google Scholar 

  • Evans, S. and Raftery, E. (1982) X-ray photoelectron diffraction studies of lepidolite. Clay Minerals, 17, 443–452.

    Article  Google Scholar 

  • Evans, S., Pritchard, R. G. and Thomas, J. M. (1978) Relative differential subshell photo-ionisation cross-sections (Mg Ka) from lithium to uranium. Journal of Electron Spectroscopy and Related Phenomena, 14, 341–358.

    Article  Google Scholar 

  • Evans, S., Raftery, E. and Thomas, J. M. (1979) Angular variations in core-level XPS peak intensity ratios from single crystal solids. Surface Science, 89, 64–75.

    Article  Google Scholar 

  • Fadley, C. S. and Shirley, D. A. (1970) Multiplet splitting of metal-atom electron binding energies. Physical Review A, 2, 1109–1120.

    Article  Google Scholar 

  • Fuggle, J. C. (1977) XPS in ultra-high vacuum conditions, in Handbook of X-ray and Photoelectron Spectroscopy (ed. D. Briggs). Heyden, London, pp. 273–312.

    Google Scholar 

  • Gregg, S. J. and Sing, K. S. W. (1982) Adsorption, Surface Area and Porosity. Academic Press, London.

    Google Scholar 

  • Gupta, R. P. and Sen, S. K. (1974) Calculation of multiplet structure of core p-vacancy levels. Physical Review B, 10, 71–77.

    Article  Google Scholar 

  • Harvey, D. T. and Linton, R. W. (1981) Chemical characterization of hydrous ferric oxides by X-ray photoelectron spectroscopy. Analytical Chemistry, 53, 1684–1688.

    Article  Google Scholar 

  • Hellman, R., Eggleston, C. M., Hochella, M. F. and Crerar, D. A. (1990) The formation of leached layers on albite surfaces during dissolution under hydrothermal conditions. Geochimica et Cosmochimica Acta, 54, 1267–1281.

    Article  Google Scholar 

  • Hochella, M. F. (1988) Auger electron and X-ray photoelectron spectroscopies, in Reviews in Mineralogy, Vol. 18, Spectroscopic Methods in Mineralogy and Geology (ed. F. C. Hawthorne). Mineralogical Society of America, Washington, DC, pp. 573–637.

    Google Scholar 

  • Hochella, M. F. and Brown, G. E. (1988) Aspects of silicate surface and bulk structure analysis using X-ray photoelectron spectroscopy (XPS). Geochimica et Cosmochimica Acta, 52, 1641–1648.

    Article  Google Scholar 

  • Hochella, M. F., Lindsay, J. R., Mossotti, V. G. and Eggleston, C. M. (1988) Sputter depth profiling in mineral-surface analysis. American Mineralogist, 73, 1449–1456.

    Google Scholar 

  • Hofmann, S. (1983) Depth profiling, in Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (eds D. Briggs and M. P. Seah). Wiley, Chichester, pp. 141–179.

    Google Scholar 

  • Inskeep, W. P., Nater, E. A., Bloom, P. R. et al. (1991) Characterization of laboratory weathered labradorite surfaces using X-ray photoelectron spectroscopy and transmission electron microscopy. Geochimica et Cosmochimica Acta, 55, 787–800.

    Article  Google Scholar 

  • Jenne, E. A. (1967) Controls on Mn, Fe, Co, Ni, Cu and Zn concentrations in soils and water: the significant role of hydrous Mn and Fe oxides. Advances in Chemistry Series, 73, 337–387.

    Google Scholar 

  • Koppelman, M. H. and Dillard, J. G. (1977) A study of the adsorption of Ni(II) and Cu(II) by clay minerals. Clays and Clay Minerals, 25, 457–462.

    Article  Google Scholar 

  • McIntyre, N. S. and Cook, M. G. (1975) X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Analytical Chemistry, 47, 2208–2213.

    Article  Google Scholar 

  • Mclntyre, N. S. and Zetaruk, D. G. (1977) X-ray photoelectron spectroscopic studies of iron oxides. Analytical Chemistry, 49, 1521–1529.

    Article  Google Scholar 

  • Mathez, E. A. (1987) Carbonaceous matter in mantle xenoliths: composition and relevance to the isotopes. Geochimica et Cosmochimica Acta, 51, 2339–2347.

    Article  Google Scholar 

  • Muir, I. J., Bancroft, G. M. and Nesbit, H. W. (1989) Characteristics of altered labradorite surfaces by SIMS and XPS. Geochimica et Cosmochimica Acta, 50, 1235–1241.

    Article  Google Scholar 

  • Murray, J. W., Dillard, J. G., Giovanoli, R. et al. (1985) Oxidation of Mn(II): initial mineralogy, oxidation state and ageing. Geochimica et Cosmochimica Acta, 49, 463–470.

    Article  Google Scholar 

  • Oku, M., Hirokawa, K. and Ikeda, S. (1975) X-ray photoelectron spectroscopy of manganese-oxygen systems. Journal of Electron Spectroscopy and Related Phenomena, 7, 465–473.

    Article  Google Scholar 

  • Orchard, A. F. (1977) Basic principles of photoelectron spectroscopy, in Handbook of X-ray and Photoelectron Spectroscopy (ed. D. Briggs). Heyden, London, pp. 1–77.

    Google Scholar 

  • Paterson, E. and Clark, D. R. (1991) Pressure-induced cation exchange in bentonite/laponite mixtures. Clay Minerals, 26, 371–375.

    Article  Google Scholar 

  • Paterson, E., Bunch, J. L. and Duthie, D. M. L. (1986) Preparation of randomly-oriented samples for X-ray diffractometry. Clay Minerals, 21, 101–106.

    Article  Google Scholar 

  • Perry, D. L. (1986) Applications of surface techniques to chemical bonding studies of minerals. American Chemical Society, Symposium Series, 323, 388–402.

    Google Scholar 

  • Perry, D. L., Taylor, J. A. and Wagner, C. D. (1990) X-ray induced photoelectron and auger spectroscopy, in Instrumental Surface Analysis of Geologic Materials (ed. D. L. Perry). VCH Publishers, Mannheim, pp. 45–86.

    Google Scholar 

  • Petrovic, R., Berner, R. A. and Goldhaber, M. B. (1976) Rate control in dissolution of alkali feldspar — I. Study of residual feldspar grains by X-ray photoelectron spectroscopy. Geochimica et Cosmochimica Acta, 40, 537–548.

    Article  Google Scholar 

  • Russell, J. D., Parfitt, R. L., Fraser, A. R. and Farmer, V. C. (1974) Surface structures of gibbsite, goethite and phosphated goethite. Nature, 248, 220–221.

    Article  Google Scholar 

  • Schindler, P. W. (1990) Co-adsorption of metal ions and organic ligands: formation of ternary surface complexes, in Reviews in Mineralogy, Vol. 23, Mineral—Water Interface Geochemistry (eds M. F. Hochella and A. R. White). Mineralogical Society of America, Washington, DC, pp. 281–307.

    Google Scholar 

  • Schott, J. and Berner, R. A. (1983) X-ray photoelectron studies of the mechanism of iron silicate dissolution during weathering. Geochimica et Cosmochimica Acta, 47, 2233–2240.

    Article  Google Scholar 

  • Seah, M. P. (1980) The quantitative analysis of surfaces by XPS: a review. Surface and Interface Analysis, 2, 222–239.

    Article  Google Scholar 

  • Seah, M. P. (1983) Quantification of AES and XPS, in Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (eds D. Briggs and M. P. Seah). Wiley, Chichester, pp. 181–216.

    Google Scholar 

  • Seah, M. P. and Dench, W. A. (1979) Quantitative electron spectroscopy of solids: a standard data base for electron inelastic mean free paths in solids. Surface and Interface Analysis, 1, 2–11.

    Article  Google Scholar 

  • Seyama, H. and Soma, M. (1984) X-ray photoelectron spectroscopic study of montmorillonite containing exchangeable divalent cations. Journal of the Chemical Society, Faraday Transactions I, 80, 237–248.

    Article  Google Scholar 

  • Seyama, H. and Soma, M. (1985) Bonding-state characterization of the constituent elements of silicate minerals by X-ray photoelectron spectroscopy. Journal of the Chemical Society, Faraday Transactions I, 81, 485–495.

    Article  Google Scholar 

  • Sherwood, P. M. A. (1983) Data analysis in X-ray photoelectron spectroscopy, in Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (eds D. Briggs and M. P. Seah). Wiley, Chichester, pp. 445–475.

    Google Scholar 

  • Soma, M., Tanaka, A., Seyama, H. et al. (1990) Bonding states of sodium in tetrasilicic sodium fluor mica. Clay Science, 8, 1–8.

    Google Scholar 

  • Sposito, G. (1990) Molecular models of ion adsorption on mineral surfaces, in Reviews in Mineralogy, Vol. 23, Mineral—Water Interface Geochemistry (eds M. F. Hochella and A. R. White), Mineralogical Society of America, Washington, DC, pp. 261–279.

    Google Scholar 

  • Stipp, S. L. and Hochella, M. F. (1991) Structure and bonding environments at the calcite surface as observed with X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED). Geochimica et Cosmochimica Acta, 55, 1723–1736.

    Article  Google Scholar 

  • Storp, S. (1985) Radiation damage during surface analysis. Spectrochimica Acta, 40B, 745–756.

    Google Scholar 

  • Stucki, J. W., Roth, C. B. and Baitinger, W. E. (1976) Analysis of iron-bearing clay minerals by electron spectroscopy for chemical analysis (ESCA). Clays and Clay Minerals, 24, 289–292.

    Article  Google Scholar 

  • Swift, P. (1982) Adventitious carbon — the panacea for energy referencing? Surface and Interface Analysis, 4, 47–51.

    Article  Google Scholar 

  • Swift, P., Shuttleworth, D. and Seah, M. R (1983) Static charge referencing techniques, in Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (eds D. Briggs and M. R Seah). Wiley, Chichester, pp. 437–444.

    Google Scholar 

  • Thirioux, L., Baillif, P., Touray, J. C. and Ildefonse, J. P. (1990) Surface reactions during fluorapatite dissolution—recrystallization in acid media (hydrochloric and citric acids). Geochimica et Cosmochimica Acta, 54, 1969–1977.

    Article  Google Scholar 

  • Thomassin, J. H., Goni, J., Baillif, P. et al. (1977) An XPS study of the dissolution kinetics of chrysotile in 0.1 N oxalic acid at different temperatures. Physics and Chemistry of Minerals, 1, 385–398.

    Google Scholar 

  • Tingle, T. N., Hochella, M. F., Becker, C. H. and Malhotra, R. (1990) Organic compounds on crack surfaces in olivine from San Carlos, Arizona, and Hualalai Volcano, Hawaii. Geochimica et Cosmochimica Acta, 54, 477–485.

    Article  Google Scholar 

  • Vempati, R. K., Loeppart, R. H., Dufner, D. C and Cocke, D. L. (1990) X-ray photoelectron spectroscopy as a tool to differentiate silicon-bonding state in amorphous iron oxides. Soil Science Society of America, Journal, 54, 695–698.

    Article  Google Scholar 

  • VG Scientific (1992) Escalab 220i reaches new 2 mm record. Surface Science Inview, Winter, 1992/93. Fisons Scientific Instruments, East Grinstead.

    Google Scholar 

  • Wagner, C.D. (1977) The role of auger lines in photoelectron spectroscopy, in Handbook of X-ray and Photoelectron Spectroscopy (ed. D. Briggs). Heyden, London, pp. 249–272.

    Google Scholar 

  • Wagner, C. D., Gale, L. H. and Raymond, R. H. (1979) Two-dimensional chemical state plots: a standardized set for use in identifying chemical states by X-ray photoelectron spectroscopy Analytical Chemistry, 51, 466–482.

    Article  Google Scholar 

  • Walker, S. and Straw, H. (1961) Spectroscopy, Vol. 1, Atomic, Microwave and Radio-frequency Spectroscopy. Science Paperbacks, London.

    Google Scholar 

  • West, A. R. and Castle, J. E. (1982) The correlation between the Auger parameter with refractive index: an XPS study using Zr Lα radiation. Surface and Interface Analysis, 4, 68–75.

    Article  Google Scholar 

  • Wilson, M. J. and McHardy, W. J. (1980) Experimental etching of microcline perthite and implications regarding natural weathering. Journal of Microscopy, 120, 291–302.

    Article  Google Scholar 

  • Yin, L. I., Ghose, S. and Adler, I. (1971) Core binding energy differences between bridging and nonbridging oxygen atoms in a silicate chain. Science, 173, 633–635.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Paterson, E., Swaffield, R. (1994). X-ray photoelectron spectroscopy. In: Wilson, M.J. (eds) Clay Mineralogy: Spectroscopic and Chemical Determinative Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0727-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0727-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4313-7

  • Online ISBN: 978-94-011-0727-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics