Skip to main content

Chemical vapour deposition of diamond

  • Chapter

Abstract

Growth of diamond at conditions where it is the metastable phase can be achieved by various chemical vapour deposition methods. Atomic hydrogen plays a major role in mediating rates and in maintaining a proper surface for growth. Low molecular weight hydrocarbon species (e.g. CH3 and C2H x ) are believed to be responsible for extension of the diamond lattice, but complete understanding of attachment mechanisms has not yet been achieved. The nucleation of diamond crystals directly from the gas phase can proceed through a graphitic intermediate. Once formed, the growth rate of diamond crystals is enhanced by the influence of stacking errors. Many of the commonly observed morphologies, e.g. hexagonal platelets and (apparent) decahedral and icosahedral crystals, can be explained by the influence of simple stacking errors on growth rates. In situ measurements of growth rates as a function of hydrocarbon concentration show that the mechanism for diamond growth is complex and may involve surface adsorption processes in rate limiting steps. The transport regime in diamond deposition reactors varies widely. In the hot-filament and microwave reactors, which operate from 20 to 100 Torr (1 Torr ≈ 133 Pa), the transport of mass and energy is dominated by molecular diffusion. In the atmospheric pressure combustion and plasma methods, transport is dominated by convection. In situ measurements of H atom recombination rates in hot-filament reactors show that, under many commonly used process conditions, transport of atomic hydrogen to the growing surface is diffusion limited and H atom recombination is a major contributor to energy transport.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angus, J. C., Will, H. A. & Stanko, W. S. 1968 Growth of diamond seed crystals by vapor deposition. J. appl. Phys. 39, 2915–2922.

    Article  CAS  Google Scholar 

  • Angus, J. C., Gardner, N. C., Poferl, D. J., Chauhan, S. P., Dyble, T. J. & Sung, P. 1971 Sin. Almazy 3, 38–40.

    CAS  Google Scholar 

  • Angus, J. C., Hoffman, R. W. & Schmidt, P. H. 1988 Studies of amorphous hydrogenated diamondlike hydrocarbons and crystalline diamond. In Science and technology of new diamond (ed. S. Saito, 0. Fukunaga & M. Yoshikawa), pp. 9–16. Tokyo: KTK/Terra.

    Google Scholar 

  • Angus, J. C. 1989 History and current status of diamond growth at metastable conditions. In Proc. First Int. Symp. on Diamond and Diamondlike Films ,pp. 1–13. Pennington, New Jersey: Electrochemical Society.

    Google Scholar 

  • Angus, J. C., Buck, F. A., Sunkara, M., Groth, T. F., Hayman, C. C. & Gat, R. 1989 Diamond growth at low pressures. MRS Bulletin October, 38–47.

    Google Scholar 

  • Angus, J. C., Li, Z., Sunkara, M., Gat, R., Anderson, A. B., Mehandru, S. P. & Geis, M. W. 1991a Nucleation and growth processes in chemical vapor deposition of diamonds. Electrochem. Soc. Symp. Series. Pennington, New Jersey: Electrochemical Society.

    Google Scholar 

  • Angus, J. C., Wang, Y. & Sunkara, M. 19916 Metastable growth of diamond and diamondlike phases. A. Rev. Mater. Sci. 21, 221–248.

    Article  CAS  Google Scholar 

  • Angus, J. C. 1991 Innovations in the chemical vapor deposition of diamond: perceptions of a participant. In Japanese/American technological innovation (ed. W. David Kingery), pp. 136–142. New York: Elsevier.

    Google Scholar 

  • Angus, J. C., Sunkara, M., Sahaida, S. R. & Glass, J. T. 1992 Twinning and faceting in the early stages of diamond growth by chemical vapor deposition. J. Mater. Res. 7, 3001–3009.

    Article  CAS  Google Scholar 

  • Badziag, P., Verwoerd, W. S., Ellis, W. P. & Greiner, N. R. 1990 Nanometre-sized diamonds are more stable than graphite. Nature, Lond. 343, 244–245.

    Article  CAS  Google Scholar 

  • Badzian, A. R. & DeVries, R. C. 1988 Crystallization of diamond from the gas phase: part 1. Mater. Res. Soc. Bull. 23, 385–400.

    Article  CAS  Google Scholar 

  • Belton, D. N. & Schmieg, S. J. 1990 States of surface carbon during diamond growth on Pt. Surf. Sci. 233, 131–140.

    Article  CAS  Google Scholar 

  • Berman, R. & Simon, F. 1955 On the graphite-diamond equilibrium. Z. Elektrochem. 59, 333–338.

    CAS  Google Scholar 

  • Berriman, R. W. & Herz, R. H. 1957 Twinning and the tabular growth of silver bromide crystals. Nature, Lond. 180, 293–294.

    Article  CAS  Google Scholar 

  • Bridgman, P. W. 1955 Synthetic diamonds. Scient. Am. 193, 42–46.

    Article  Google Scholar 

  • Celii, F. G. & Butler, J. E. 1991 Diamond chemical vapor deposition. A. Rev. Phys. Chem. 42, 643–684.

    Article  CAS  Google Scholar 

  • Chauhan, S. P., Angus, J. C. & Gardner, N. C. 1976 Kinetics of carbon deposition on diamond powder. J. appl. Phys. 47, 4746–4754.

    Article  CAS  Google Scholar 

  • Chu, C. J., D’Evelyn, M. P. & Hauge, R. H. 1991 Mechanism of diamond growth by chemical vapour deposition on diamond (100), (111) & (110) surfaces: carbon-13 studies. J. appl. Phys. 70, 1695–1705.

    Article  CAS  Google Scholar 

  • Davies, G. 1984 Diamond. Bristol: Adam Hilger Ltd.

    Google Scholar 

  • Debroy, T., Tankala, K., Yarbrough, W. A. & Messier, R. 1990 Role of heat transfer and fluid flow in the chemical vapor deposition of diamond. J. appl. Phys. 68, 2424–2432.

    Article  CAS  Google Scholar 

  • Deryagin, B. V., Spitsyn, B. V., Builov, L. L., Klochkov, A. A., Gurodetski, A. E. & Smolyaninov, A. V. 1976 Synthesis of diamond on non-diamond substrates. Dokl. Akad. Nauk SSSR 231, 333–335.

    CAS  Google Scholar 

  • Deryagin, B. V., Fedoseev, D. V., Spitsyn, B. V., Lukyanovich, D. V., Ryabov, B. V. & Lavrentev, A. V. 1968 Filamentary diamond crystals. J. Cryst. Growth 2 ,380–384.

    Article  CAS  Google Scholar 

  • DeVries, R. C. 1987 Synthesis of diamond under metastable conditions. A. Rev. Mater. Sci. 17, 161–176.

    Article  CAS  Google Scholar 

  • Eversole, W. G. 1962 Synthesis of diamond. U.S. Patents 3,030,187 and 3,003,188.

    Google Scholar 

  • Everson, M. P. & Tamor, M. A. 1991 Studies of nucleation and growth of boron-doped diamond microcrystals by scanning tunneling microscopy. J. Vac. Sci. Technol. B 9, 1570–1576.

    Google Scholar 

  • Frenklach, M. 1991 Molecular processes in diamond formation. In Proc. Second Int. Symp. on Diamond Materials (ed. A. J. Purdes, J. C. Angus, R. F. Davis, B. M. Meyerson, K. E. Spear & M. Yoder), vol. 91–98, pp. 145–153. Pennington, New Jersey: Electrochemical Society.

    Google Scholar 

  • Frenklach, M., Clary, D. W., Gardiner, W. C. & Stein, S. E. 1985 Detailed kinetic modeling of soot formation in shock-tube pyrolysis acetylene. In Proc. 20th Int. Symp. on Combustion ,pp. 887–901. Pittsburgh: The Combustion Institute.

    Google Scholar 

  • Garrison, B. J., Dawnkaski, E. J., Srivastava, D. & Brenner, D. W. 1992 Molecular dynamics simulations of a dimer opening on a diamond (001) (2 x 1) surface. Science, Wash. 255, 835–842.

    Article  CAS  Google Scholar 

  • Gat, R. 1992 Hot filament assisted deposition of diamond films. Ph.D. thesis, Case Western Reserve University, Cleveland, Ohio.

    Google Scholar 

  • Gat, R. & Angus, J. C. 1992 Energy transport in hot-filament assisted deposition of diamond films. J. appl. Phys. (In the press.)

    Google Scholar 

  • Goodwin, D. G. & Gavillet, G. G. 1991 Numerical modeling of filament-assisted diamond growth. In Proc. 2nd Int. Conf. on New Diamond Science and Technology (ed. R. Messier & J. T. Glass), pp. 335–340. Pittsburgh: Material Research Society.

    Google Scholar 

  • Harris, S. J. & Wiener, A. M. 1985 Chemical kinetics of soot particle growth. A. Rev. Phys. Chem. 36, 31–52.

    Article  CAS  Google Scholar 

  • Harris, S. J., Belton, D. N. & Blint, R. J. 1991 Thermochemistry on the hydrogenated diamond (111) surface. J. appl. Phys. 70, 2654–2659.

    Article  CAS  Google Scholar 

  • Iijima, S., Aikawa, Y. & Baba, K. 1991 Growth of diamond particles in chemical vapor deposition. J. Mater. Res. 6, 1491–1497.

    Article  CAS  Google Scholar 

  • Joffreau, P. O., Haubner, R. & Lux, B. 1988 Low pressure diamond growth on refractory metals. In Proc. MRS Spring meeting. Pittsburgh: Material Research Society.

    Google Scholar 

  • Kamo, M., Sato, S., Matsumoto, S. & Setaka, N. 1983 Diamond synthesis from gas phase microwave plasma. J. Cryst. Growth 62, 642–644.

    Article  CAS  Google Scholar 

  • Kuczmarski, M. A. 1992 Modelling of chemical vapor deposition reactors for silicon carbide and diamond growth. Ph.D. thesis, Case Western Reserve University, Cleveland, Ohio.

    Google Scholar 

  • Kuczmarski, M. A., Washlock, P. A. & Angus, J. C. 1991 Computer simulation of a hot-filament CVD reactor for diamond deposition. In Applications of diamond films and related materials (Mater. Sci. Monographs) (ed. Y. Tzeng, M. Yoshikawa, M. Murakawa & A. Feldman), vol. 73, pp. 591–596. Amsterdam: Elsevier.

    Google Scholar 

  • Lander, J. J. & Morrison, J. 1964 Low energy electron diffraction study of the (111) diamond surface. Surf. Sci. 2 ,241–246.

    Article  Google Scholar 

  • Leipunski, O. I. 1939 Synthetic diamonds. Usp. Khim. 8, 1519–1534.

    Google Scholar 

  • Li, Z., Wang, L., Suzuki, T., Argoitia, A., Pirouz, P. & Angus, J. 1992 Orientation relationship between chemical vapour deposited diamond and graphite substrates. J. appl. Phys. (In the press.)

    Google Scholar 

  • Liander, H. & Lundblad, E. 1960 Some observations on the synthesis of diamonds. Ark. Kemi. 16, 139–149.

    CAS  Google Scholar 

  • Lux, B. & Haubner, R. 1991 Nucleation and growth of wear-resistant diamond coatings. In Proc. Electrochemical Society Spring meeting. Pennington, New Jersey: Electrochemical Society.

    Google Scholar 

  • Matsui, Y., Matsumoto, S. & Setaka, N. 1983 TEM-electron energy loss spectroscope study of the diamond particles prepared by chemical vapor deposition from methane. J. Mater. Sci. Lett. 2, 532–534.

    Article  CAS  Google Scholar 

  • Matsumoto, S., Sato, Y., Kamo, M. & Setaka, N. 1982a Vapor deposition of diamond particles from methane. Jap. J. appl. Phys. 2 ,L183–L185.

    Article  Google Scholar 

  • Matsumoto, S., Sato, Y., Tsutsumi, M & Setaka, N. 1982b Growth of diamond particles from methane-hydrogen gas. J. Mater. Sci. 17, 3106–3112.

    Article  CAS  Google Scholar 

  • Mehandru, S. P., Anderson, A. B. & Angus, J. C. 1992 Hydrogen binding and diffusion in diamond. J. Mater. Res. 7, 689–695.

    Article  CAS  Google Scholar 

  • Piekarcyk, W., Roy, R. & Messier, R. 1989 Application of thermodynamics to the examination of the diamond CVD process from hydrocarbon-hydrogen. J. Cryst. Growth 98, 765–776.

    Article  Google Scholar 

  • Rau, H. & Picht, F. 1992 Rate limitation in low pressure diamond growth. J. Mater. Res. 7, 934–939.

    Article  CAS  Google Scholar 

  • Rossini, F. D. & Jessup, R. S. 1938 Heat and free energy of formation of carbon dioxide, and the transition between graphite and diamond. J. Res. NBS 21, 491–513.

    CAS  Google Scholar 

  • Rye, R. R. 1977 Reaction of thermal atomic hydrogen with carbon. Surf. Sci. 69, 653–667.

    Article  CAS  Google Scholar 

  • Spitsyn, B. V. & Deryagin, B. V. 1956 Process for growing diamond grains. Author’s patent certificate dated July 10, 1956; U.S.S.R. patent 339,134, May 5, 1980.

    Google Scholar 

  • Stein, S. E. 1990 Diamond and graphite precursors. Nature, Lond. 346, 517.

    Article  CAS  Google Scholar 

  • Sommer, M., Mui, K. & Smith, F. W. 1989 Thermodynamic analysis of the chemical vapor deposition of diamond films. Solid State Commun. 69, 775–778.

    Article  CAS  Google Scholar 

  • Stull, D. R., Westrum, E. F. & Sinke, G. C. 1969 The chemical thermodynamics of organic compounds. New York: John Wiley.

    Google Scholar 

  • Stull, D. R. & Prophet, H. 1971 JANAF thermochemical tables ,2nd edn. Washington, D.C.: National Bureau of Standards.

    Google Scholar 

  • Sunkara, M. 1992 Monte Carlo simulation of diamond nucleation and growth. Ph.D. thesis, Case Western Reserve University, Cleveland, Ohio, U.S.A.

    Google Scholar 

  • Sunkara, M., Angus, J. C., Hayman, C. C. & Buck, F. A. 1990 Nucleation of diamond crystals. Carbon 28, 745–746.

    Article  Google Scholar 

  • Tiller, W. A. 1991 The science of crystallization: microscopic interfacial phenomena. New York: Cambridge University Press.

    Book  Google Scholar 

  • Wang, Y., Evans, E. & Angus, J. C. 1992 Diamond growth kinetics. J. appl. Phys. (Submitted.)

    Google Scholar 

  • Yarbrough, W. A., Inspektor, A. & Messier, R. 1990 The chemical vapour deposition of diamond. In Properties and characterization of amorphous carbon films (ed. J. J. Pouch & S. A. Alterovich), pp. 151–174. Aedermannsdorf, Switzerland: Trans. Tech.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Angus, J.C. et al. (1994). Chemical vapour deposition of diamond. In: Lettington, A.H., Steeds, J.W. (eds) Thin Film Diamond. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0725-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0725-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4312-0

  • Online ISBN: 978-94-011-0725-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics