Skip to main content

Effects of population dynamics on genetics in mosaic landscapes

  • Chapter
Mosaic Landscapes and Ecological Processes

Abstract

Most terrestrial landscapes consist of a mosaic of habitat patches of varying size and composition. This is perhaps most evident when the natural biome has been fragmented by human impact, as in the mixture of woodlots, cultivated fields and pastures so familiar to residents of eastern North America and northern Europe. One consequence of this patchwork of habitats is to subdivide many species into numerous localized collections of individuals. When an organism’s dispersal potential is limited relative to the dispersion pattern of the patches it can occupy, the landscape could be said to impose a population structure on the species. Here, a local population is being defined loosely as a collection of conspecifics more likely to interact with each other than with individuals from some other locality. The range of possible population structures can be described as a continuum, with highly interdependent populations connected by high rates of migration lying at one extreme and highly isolated, independent populations lying at the other. The way in which a particular landscape imposes a population structure depends on the movement ecology of the species in question, as well as on the spatial arrangement of patch types (Chapter 7). For example, the same landscape could impose very different population structures on snails and sparrows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonovics, J., Thrall, P., Jarosz, A. and Stratton, D. (1994) Ecological genetics of metapopulations: The Silene-Ustilago plant-pathogen system, in Ecological Genetics (ed. L. Real), Princeton University Press, Princeton, NJ, pp. 146–170.

    Google Scholar 

  • Barton, N. H. (1992) The genetic consequences of dispersal, in Animal Dispersal Small Mammals as a Model (eds N. C. Stenseth and W. L. Lidicker Jr), Chapman & Hall, New York, pp. 37–59.

    Google Scholar 

  • Burdon, J. J. and Jarosz, A. M. (1992) Temporal variation in the racial structure of flax rust (Melampsora lini) populations growing on natural stands of wild flax (Linum marginale): local versus metapopulation dynamics. Plant Path., 41, 165–79.

    Google Scholar 

  • Crow, J. F. and Kimura, M. (1970) An Introduction to Population Genetic Theory, Harper and Row, New York.

    Google Scholar 

  • Dybdahl, M. F. (1994) Extinction, recolonization, and the genetic structure of tidepool copepod populations. Evol. Ecol., 8, 113–124.

    Google Scholar 

  • Ebenhard, T. (1991) Colonization in metapopulations: A review of theory and observations. Biol. J. Linn. Soc., 42, 105–21.

    Google Scholar 

  • Ewens, W. J., Brockwell, P. J., Gani, J. M. and Resnick, S. I. (1987) Minimum viable population size in the presence of catastrophes, in Viable Populations for Conservation (ed. M. E. Soule), Cambridge University Press, Cambridge, pp. 59–68.

    Google Scholar 

  • Falconer, D. (1989) Introduction to Quantitative Genetics, 3rd edn, Longman, New York.

    Google Scholar 

  • Fisher, R. A. (1958) The Genetical Theory of Natural Selection, Dover, New York.

    Google Scholar 

  • Frankel, O. H. and Soule, M. E. (1981) Conservation and Evolution, Cambridge University Press, Cambridge.

    Google Scholar 

  • Gilpin, M. E. (1990) Extinction of finite metapopulations in correlated environments, in Living in a Patchy Environment (eds B. Shorrocks and I. Swingland), Oxford University Press, Oxford, pp. 177–86.

    Google Scholar 

  • Gilpin, M. E. (1991) The genetic effective size of a metapopulation. Biol. J. Linn. Soc., 42, 165–75.

    Google Scholar 

  • Gilpin, M. E. and Soule, M. E. (1986) Minimum viable populations: Processes of species extinction, in Conservation Biology the Science of Scarcity and Diversity (ed. M. E. Soule), Sinauer Sunderland, MA, pp. 19–34.

    Google Scholar 

  • Gyllenberg, M. and Hanski, I. (1992) Single-species metapopulation dynamics: A structured model. Theor. Pop. Biol., 42, 35–61.

    Google Scholar 

  • Hamrick, J. L. and Godt, M. J. (1990) Allozyme diversity in plant species, in Plant Population Genetics, Breeding, and Genetic Resources (eds A. H. D. Brown, M. T Clegg, A. L. Kahler and B. S. Weir), Sinauer, Sunderland, MA, pp. 43–63.

    Google Scholar 

  • Hanski, I. (1989) Metapopulation dynamics: does it help to have more of the same? Trends Ecol. Evol., 4, 113–14.

    PubMed  CAS  Google Scholar 

  • Hanski, I. (1991) Single-species metapopulation dynamics: concepts, models and observations. Biol. J. Linn. Soc., 42, 17–38.

    Google Scholar 

  • Hanski, I. (1994) A practical model of metapopulation dynamics. J. Anim. Ecol., 63, 151–62.

    Google Scholar 

  • Hanski, I. and Gilpin, M. (1991) Metapopulation dynamics: brief history and conceptual domain. Biol. J. Linn. Soc., 42, 3–16.

    Google Scholar 

  • Hanski, I., Kuussaari, M. and Nieminen, M. (1994) Metapopulation structure and migration in the butterfly Melitaea cinxia. Ecology, 75, 747–61.

    Google Scholar 

  • Harrison, S. (1991) Local extinction in a metapopulation context: an empirical evaluation. Biol. J. Linn. Soc., 42, 73–88.

    Google Scholar 

  • Harrison, S. and Quinn, J. F. (1989) Correlated environments and the persistence of metapopulations. Oikos, 56, 293–8.

    Google Scholar 

  • Harrison, S., Murphy, D. D. and Ehrlich, P. R. (1988) Distribution of the bay checkerspot butterfly, Euphydryas editha bayensis: Evidence for a metapopulation model. Am. Nat., 132, 360–82.

    Google Scholar 

  • Hartl, D. L. and Clark, A. G. (1989) Principles of Population Genetics, Sinauer, Sunderland, MA.

    Google Scholar 

  • Hastings, A. (1991) Structured models of metapopulation dynamics. Biol. J. Linn. Soc., 42, 57–71.

    Google Scholar 

  • Kindvall, O. and Ahlen, I. (1992) Geometrical factors and metapopulation dynamics of the bush cricket, Metrioptera bicolor Philippi (Orthoptera: Tettigoniidae). Conserv. Biol., 6, 520–9.

    Google Scholar 

  • Lande, R. (1988) Genetics and demography in biological conservation. Science, 241, 1455–60.

    PubMed  CAS  Google Scholar 

  • Lande, R. (1992) Neutral theory of quantitative genetic variation in an island model with local extinction and recolonization. Evolution, 46, 381–9.

    Google Scholar 

  • Levene, H. (1953) Genetic equilibrium when more than one ecological niche is available. Am. Nat., 87, 331–3.

    Google Scholar 

  • Levin, S. A. (1992) The problem of pattern and scale in ecology. Ecology, 73, 1943–67.

    Google Scholar 

  • Levins, R. (1968) Evolution in Changing Environments, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Levins, R. (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Ent. Soc. Am., 15, 237–40.

    Google Scholar 

  • Levins, R. (1970) Extinction, in Some Mathematical Problems in Biology (ed. M. Gerstenhaber), American Mathematical Society, Providence, RI, pp. 77–107.

    Google Scholar 

  • Mangel, M. and Tier, C. (1993) Dynamics of metapopulations with demographic stochasticity and environmental catastrophes. Theor. Pop. Biol., 44, 1–31.

    Google Scholar 

  • Maruyama, T. and Kimura, M. (1980) Genetic variability and the effective size when local extinction and recolonization are frequent. Proc. Nat. Acad. Sci. USA, 77, 6710–14.

    PubMed  CAS  Google Scholar 

  • McCauley, D. E. (1989) Extinction, colonization, and population structure: A study of a milkweed beetle. Am. Nat., 134, 365–76.

    Google Scholar 

  • McCauley, D. E. (1991) Genetic consequences of local population extinction and recolonization. Trends Ecol. Evol., 6, 5–8.

    PubMed  CAS  Google Scholar 

  • McCauley, D. E. (1993) Genetic consequences of extinction and colonization in fragmented habitats, in Biotic Interactions and Global Change (eds P. M. Kareiva, J. G. Kingsolver and R. B. Huey), Sinauer Associates, Sunderland, MA, pp. 217–33.

    Google Scholar 

  • McCauley, D. E. and Eanes, W. F. (1987) Hierarchical population structure analysis of the milkweed beetle, Tetraopes tetraophthalmus. Heredity, 58, 193–201.

    Google Scholar 

  • Nevo, E. (1978) Genetic variation in natural populations: pattern and theory. Theor. Pop. Biol., 13, 121–77.

    CAS  Google Scholar 

  • Nisbet, R. M. and Gurney, W. S. C. (1982) Modelling Fluctuating Populations, John Wiley and Sons.

    Google Scholar 

  • Quinn, J. F. and Hastings, A. (1987) Extinction in subdivided habitats. Conserv. Biol., 1, 198–208.

    Google Scholar 

  • Peltonen, A. and Hanski, I. (1991) Patterns of island occupancy explained by colonization and extinction rates in shrews. Ecology, 72, 1698–708.

    Google Scholar 

  • Perry, J. N. and Gonzalez-Andujar, J. L. (1993) Dispersal in a metapopulation neighborhood model of an annual plant with a seedbank. J. Ecol., 81, 453–63.

    Google Scholar 

  • Pulliam, H. R. (1988) Sources, sinks, and population regulation. Am. Nat., 132, 652–61.

    Google Scholar 

  • Ray, C., Gilpin, M. E. and Smith, A. T. (1991) The effect of conspecific attraction on metapopulation dynamics. Biol. J. Linn. Soc., 42, 123–34.

    Google Scholar 

  • Richter-Dyn, N. and Goel, N. S. (1972) On the extinction of a colonizing species. Theor. Pop. Biol., 3, 406–33.

    CAS  Google Scholar 

  • Schoener, T. W. and Spiller, D. A. (1987) High population persistence in a system with high turnover. Nature, 330, 474–7.

    Google Scholar 

  • Schoener, T. W. and Spiller, D. A. (1992) Is temporal variability in population size related to extinction rate? An empirical answer for orb spiders. Am. Nat., 139, 1176–207.

    Google Scholar 

  • Schonewald-Cox, C. M., Chambers, S. M., MacBryde, F. and Thomas, L. (eds) (1983) Genetics and Conservation: A Reference for Managing Wild Animal and Plant Populations, Benjamin Cummings, Menlo Park, CA.

    Google Scholar 

  • Sjogren, P. (1991) Extinction and isolation gradients in metapopulations: the case of the pool frog (Rana lessonae). Biol J. Linn. Soc., 42, 135–47.

    Google Scholar 

  • Slatkin, M. (1977) Gene flow and genetic drift in a species subject to frequent local extinctions. Theor. Pop. Biol., 12, 253–62.

    CAS  Google Scholar 

  • Slatkin, M. (1985) Gene flow in natural populations. Ann. Rev. Ecol. Syst., 16, 393–430.

    Google Scholar 

  • Smith, A. T. and Peacock, M. M. (1990) Conspecific attraction and the determination of metapopulation colonization rates. Conserv. Biol., 4, 320–2.

    Google Scholar 

  • Varvio, S.-L., Chakraborty, R. and Nei, M. (1986) Genetic variation in subdivided populations and conservation genetics. Heredity, 57, 189–98.

    PubMed  Google Scholar 

  • Wade, M. J. (1978) A critical review of the models of group selection. Q. Rev. Biol., 53, 101–14.

    Google Scholar 

  • Wade, M. J. and McCauley, D. E. (1984) Group selection: The interaction of local deme size and migration in the differentiation of small populations. Evolution, 38, 1047–58.

    Google Scholar 

  • Wade, M. J. and McCauley, D. E. (1988) Extinction and recolonization: Their effects on the genetic differentiation of local populations. Evolution, 42, 995–1005.

    Google Scholar 

  • Whitlock, M. C. (1992a) Temporal fluctuations in demographic parameters and in genetic variance among populations. Evolution, 46, 608–15.

    Google Scholar 

  • Whitlock, M. C. (1992b) Non-equilibrium population structure in forked fungus beetles: Extinction, colonization, and the genetic variance among populations. Am. Nat., 139, 952–70.

    Google Scholar 

  • Whitlock, M. C. and McCauley, D. E. (1990) Some population genetic consequences of colony formation and extinction: genetic correlations within founding groups. Evolution, 44 1717–24.

    Google Scholar 

  • Wright, S. (1931) Evolution in mendelian populations. Genetics, 16, 97–159.

    PubMed  CAS  Google Scholar 

  • Wright, S. (1940) Breeding structure of populations in relation to speciation. Am. Nat., 74, 232–48.

    Google Scholar 

  • Wright, S. (1977) Evolution and the Genetics of Populations. Vol. 3, Experimental Results and Evolutionary Deductions, University of Chicago Press, Chicago.

    Google Scholar 

  • Wright, S. (1978) Evolution and the Genetics of Populations. Vol. 4, Variability Within and Among Natural Populations, University of Chicago Press, Chicago.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

McCauley, D.E. (1995). Effects of population dynamics on genetics in mosaic landscapes. In: Hansson, L., Fahrig, L., Merriam, G. (eds) Mosaic Landscapes and Ecological Processes. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0717-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0717-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4309-0

  • Online ISBN: 978-94-011-0717-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics