Skip to main content

The neurochemistry of schizophrenia

  • Chapter
  • 68 Accesses

Part of the book series: Molecular and Cell Biology of Human Diseases Series ((Mol. Cell Biol. Hu. Dis.))

Abstract

In the search for the biological basis of schizophrenia considerable attention has focused on neurotransmitters and their related enzymes and receptors in the central nervous system (CNS). Over the past fifteen years or so neurochemical studies of schizophrenia have increasingly been carried out on post-mortem brain material rather than depending on peripheral indices of central function in body fluids such as urine, blood and cerebrospinal fluid (CSF). More recently neurotransmitter receptors, in particular those for dopamine, have been assessed in living schizophrenic patients by single photon emission tomography (SPET) and by positron emission tomography (PET). The hypotheses of neurotransmitter dysfunction associated with schizophrenia that have generated significant research interest are listed in Table 6.1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adolfsson, R., Gottfries, C.G., Oreland, L. et al. (1980) Increased activity of brain and platelet monoamine oxidase in dementia of Alzheimer type. Life Sci., 27, 1029–1034.

    Article  PubMed  CAS  Google Scholar 

  • Aghajanian, G.K., Foote, W.E. and Sheard, M.H. (1970) Action of psychotogenic drugs on single mid brain raphe neurones. J. Pharmacol Exp. Ther., 171, 178–187.

    PubMed  CAS  Google Scholar 

  • Aniline, O. and Pitts, F.N. (1982) Phencyclidine: a review and perspectives. CRC Cut. Rev. Toxicol., 10, 145–177.

    Article  CAS  Google Scholar 

  • Ashcroft, G.W., Crawford, T.B.B., Eccleston, D. et al. (1966) 5-hydroxyindole compounds in the cerebrospinal fluid of patients with psychiatric or neurological disease. Lancet, 2, 1049–1052.

    Article  PubMed  CAS  Google Scholar 

  • Benes, F.M., McSparren J., Bird E.D. et al. (1991) Deficits in small interneurones in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch. Gen. Psychiatry, 48, 996–1001.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, J.P., Enna, S.J., Bylund, D.B. et al. (1979) Neurotransmitter receptors in frontal cortex of schizophrenics. Arch. Gen. Psychiatry, 36, 927–934.

    Article  PubMed  CAS  Google Scholar 

  • Berger, P.A., Watson, S.J., Akil, H. et al. (1980) Beta-endorphin and schizophrenia. Arch. Gen. Psychiatry, 37, 635–640.

    Article  PubMed  CAS  Google Scholar 

  • Berrettini, W.H., Proxialeck, W. and Vogel, W.H. (1978) Decreased platelet monoamine oxidase activity in chronic schizophrenia shown with novel substrates. Arch. Gen. Psychiatry, 35, 600–605.

    Article  PubMed  CAS  Google Scholar 

  • Bigelow, L.B., Nasrallah, H.A. and Rauscher, F.P. (1983) Corpus callosum thickness in chronic schizophrenia. Br. J. Psychiatry, 142, 284–287.

    Article  PubMed  CAS  Google Scholar 

  • Biggins, J.A., Perry, E.K., McDermott, J.R. et al. (1983) Post-mortem levels of thyrotropin-releasing hormone and neurotensin in the amygdala in Alzheimer’s disease, schizophrenia and depression. J. Neurol. Sci., 58, 117–122.

    Article  PubMed  CAS  Google Scholar 

  • Bird, E.D., Crow, T.J., Iversen, L.L. et al. (1979) Dopamine and homavanillic acid concentration in the post-mortem brain in schizophrenia. J. Physiol., 293, 36–37.

    Google Scholar 

  • Bird, E.D., Spokes, E.G., Barnes, J. et al. (1977) Increased brain dopamine and reduced glutamic acid decarboxylase and choline acetyl transferase activity in schizophrenia and related psychoses. Lancet, 2, 1157–1159.

    Article  PubMed  CAS  Google Scholar 

  • Bird, E.D., Spokes, E.G., Barnes, J., Mackay, A.V.P et al. (1978) Glutamic-acid decarboxylase in schizophrenia. Lancet, 1, 156.

    Article  PubMed  CAS  Google Scholar 

  • Bloom, F.E., Segal, D., Ling, N and Guillemin, R. (1976) Endorphins: profound behavioural effects in rats suggest new etiological factors in mental illness. Science, 194, 630–632.

    Article  PubMed  CAS  Google Scholar 

  • Bogerts, B., Meertz, E., and Schonfeldt-Bausch, R. (1985) Basal ganglia and limbic system pathology in schizophrenia: a morphometric study of brain volume and shrinkage. Arch. Gen. Psychiatry, 42, 784–791.

    Article  PubMed  CAS  Google Scholar 

  • Bond, P.A. and Howlett, D.R. (1974) Measurements of the two conjugates of 3-methoxy-4-hydroxyphenylglycol in urine. Biochem. Med., 10, 219–228.

    Article  PubMed  CAS  Google Scholar 

  • Bond, P.A., Dimitrakoudi, M., Howlett, D.R. et al. (1975) Urinary excretion of the sulphate and glucuronide of 3-methoxy-4-hydroxyphenylglycol in a manic-depressive patient. Psychol. Med., 5, 279–285.

    Article  PubMed  CAS  Google Scholar 

  • Bowers, M.B. (1970) Cerebrospinal fluid 5-hydroxyindole and behaviour after L-tryptophan and pyridoxine administration to psychiatric patients. Neuropharmacol., 9, 579–604.

    Article  Google Scholar 

  • Bowers, M.B. (1974) Central dopamine turnover in schizophrenic syndromes. Arch. Gen. Psychiatry, 31, 50–57.

    Article  PubMed  Google Scholar 

  • Bowers, M.B., Heninger, G.R. and Gerbode, F.A. (1969) Cerebrospinal fluid 5-hydroxyindole acetic acid and homovanillic acid in psychiatric patients. Int. J. Neuropharmacol., 8, 225–262.

    Google Scholar 

  • Brown, R., Colter, N., Corsellis, J.A.N. et al. (1986) Postmortem evidence of structural brain changes in schizophrenia. Differences in brain weight, temporal horn area and parahippocampal gyrus compared with affective disorder. Arch. Gen. Psychiatry, 43, 36–42.

    Article  PubMed  CAS  Google Scholar 

  • Buchsbaum, M.S., Ingvar, D.H., Kessler, R. et al. (1982) Cerebral glucography with positron tomography: use in normal subjects and patients with schizophrenia. Arch. Gen. Psychiatry, 39, 251–259.

    Article  PubMed  CAS  Google Scholar 

  • Burt, D.R., Creese, I. and Snyder, S.M. (1982) Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding in brain. Science, 196, 326–328.

    Article  Google Scholar 

  • Carlsson, A. and Lindquist, M. (1963) Effect of chlorpromazine and haloperidol on formation of 3-methoxy-tryamine and normetanephrine in mouse brain. Acta Pharmacol. Toxicol., 20, 140–144.

    Article  CAS  Google Scholar 

  • Carruthers, B., Dawbarn, B., De Quidt, M. et al. (1984) Changes of the neuropeptide content of the amygdala in schizophrenia. Br. J. Pharmacol., 81, 190P.

    Google Scholar 

  • Christmas, A.J., Coulson, C.J., Maxwell, D.R. and Riddell, D. (1972) A comparison of the pharmacological and biochemical properties of substrate-selective monoamine oxidase inhibitors. Br. J. Pharmacol., 45, 490–503.

    Article  PubMed  CAS  Google Scholar 

  • Civelli, O., Bunzow, J.R., Grawdy, D.K. et al. (1991) Molecular biology of the dopamine receptors. Eur. J. Pharmacol., 207, 277–286.

    Article  PubMed  CAS  Google Scholar 

  • Clement-Cormier, Y.C., Kebabian, J.W., Petzold, G.L. et al. (1974) Dopamine-sensitive adenylate cyclase in mammalian brains; a possible site of action of antipsychotic drugs. Proc. Natl. Acad. Sci. USA, 71, 1113–1117.

    Article  PubMed  CAS  Google Scholar 

  • Connell, P.H. (1958) Amphetamine Psychosis, Maudsley Monograph No. 5, Chapman & Hall, London.

    Google Scholar 

  • Crawley, J.C.W., Crow, T.J., Johnstone, E.C. et al. (1986) Dopamine D2 receptors in schizophrenia studied in vivo. Lancet, 2, 224–225.

    Article  PubMed  CAS  Google Scholar 

  • Cross, A.J., Crow, T.J. and Owen, F. (1981) 3H-Flupenthixol binding in postmortem brains of schizophrenics; evidence for a selective increase in dopamine D2 receptors. Biochem. Soc. Trans., 7, 145–146.

    Google Scholar 

  • Cross, A.J. and Owen, F. (1979) The activities of glutamic acid decarboxylase and choline acetyltransferase in post-mortem brains of schizophrenics and controls. Biochem. Soc. Trans., 7, 145–146.

    PubMed  CAS  Google Scholar 

  • Cross, A.J. and Owen, F. (1980) Characteristics of 3H-cis-flupenthixol binding to calf brain membranes. Eur. J. Pharmacol, 65, 341–347.

    Article  PubMed  CAS  Google Scholar 

  • Cross, A.J., Owen, F. and Crow, T.J. (1979) Gamma-aminobutyric acid in the brain in schizophrenia. Lancet, 560-561.

    Google Scholar 

  • Cross, A.J., Crow, T.J., Glover, V. et al. (1977) Monoamine oxidase activity in postmortem brains of schizophrenics and controls. Br. J. Clin. Pharmacol., 4, 719P.

    CAS  Google Scholar 

  • Cross, A.J., Crow, T.J., Killpack, W.S. et al. (1978) The activities of brain dopamine-β-hydroxylase and catechol-o-methyltransferase in schizophrenics and controls. Psychopharmacology, 59, 117–121.

    Article  PubMed  CAS  Google Scholar 

  • Crow, T.J. (1980) Molecular pathology of schizophrenia: more than one disease process? Br. Med. J., 280, 66–68.

    Article  PubMed  CAS  Google Scholar 

  • Crow, T.J., Owen, F., Cross, A.J. and Longden, A. (1978) Brain biochemistry in schizophrenia. Lancet, 1, 36–37.

    Google Scholar 

  • Crow, T.J., Baker, H.F., Cross, A.J. et al. (1979) Monoamine mechanisms in chronic schizophrenia: post-mortem neurochemical findings. Br. J. Psychiatry, 134, 249–256.

    Article  PubMed  CAS  Google Scholar 

  • Czudek, C. and Reynolds, G.P. (1988) Binding of 3H-SCH 23390 to post-mortem brain tissue in schizophrenia. Br. J. Pharmacol., 95, 282.

    Google Scholar 

  • Davis, G.C., Bunney Jr, W.E., DeFraites, E.G. et al. (1977) Intravenous naloxone administration in schizophrenia and affective illness. Science, 197, 74–77.

    Article  PubMed  CAS  Google Scholar 

  • Deakin, J.F.W., Slater, P., Simpson, M.D.C. et al. (1989) Frontal cortical and left temporal glutamatergic dysfunction in schizophrenia. J. Neurochem., 52, 1781–1786.

    Article  PubMed  CAS  Google Scholar 

  • Deakin, J.F.W., Slater, P., Simpson, M.D.C. and Royston, M.C. (1990) Disturbed brain glutamate and GABA mechanisms in schizophrenia. Schizophrenia Res., 3(1), 33.

    Article  Google Scholar 

  • Delisi, L.E., Wise, C.D., Bridge, T.P. et al. (1981) A probable effect of neuroleptic medication on platelet monoamine oxidase acitivity. Psychiatry Res., 2, 179–186.

    Article  Google Scholar 

  • Domino, E.F. and Khanna, S.S. (1976) Decreased blood platelet MAO activity in unmedicated chronic schizophrenic patients. Am. J. Psychiatry, 133, 323–326.

    PubMed  CAS  Google Scholar 

  • Domino, E.F. and Krause, R.R. (1974) Free and bound serum tryptophan in drug free normal controls and chronic schizophrenic patients. Biol. Psychiatry, 8, 265–279.

    PubMed  CAS  Google Scholar 

  • Domino, E.F., Krause, Q.R. and Bowers, J. (1973) Various enzymes involved with putative neurotransmitters. Arch. Gen. Psychiatry, 29, 195–201.

    Article  PubMed  CAS  Google Scholar 

  • Domschke, W., Dickschas, A. and Mitznegg, P. (1979) CSF β-endorphin in schizophrenia. Lancet, 1, 1024.

    Article  PubMed  CAS  Google Scholar 

  • Early, T.S., Reiman, E.M., Raichle, M.E. and Spitznagel, E.L. (1987) Left globus pallidus abnormality in never-medicated patients with schizophrenia. Proc. Natl Acad. Sci. USA, 84, 561–563.

    Article  PubMed  CAS  Google Scholar 

  • Emrich, H.M., Cording, C., Piree, S. et al. (1977) Indication of antipsychotic action of the opiate antagonist nalozone. Pharmakopsychiatri. Neuropsychopharmakol, 10, 265–270.

    CAS  Google Scholar 

  • Emrich, H.M., Zaudig, M., Zerssen, D.V. et al. (1980) Des-tyr-gamma-endorphin in schizophrenia. Lancet, 2, 1364–1365.

    Article  PubMed  CAS  Google Scholar 

  • Enna, S.J., Bennett, J.P., Burt, D.R. et al. (1976) Stereospecificity of interaction of neuroleptic drugs with neurotransmitters and correlation with clinical potency. Nature, 263, 338–341.

    Article  PubMed  CAS  Google Scholar 

  • Farde, L., Wiesel, F.A., Stone-Elander, S. et al. (1990) D2 dopamine receptors in neuroleptic-naive schizophrenic patients. Arch. Gen. Psychiatry, 47, 213–219.

    Article  PubMed  CAS  Google Scholar 

  • Farmery, S.M., Crow, T.J. and Owen, F. (1986) 125I-Iodotyrosyl-neurotensin binding in post-mortem brain: comparison of controls and schizophrenics patients. Br. J. Pharmacol., 88, 380P.

    Google Scholar 

  • Farmery, S.M., Owen, F., Poulter, M. and Crow, T.J. (1985) Reduced high affinity cholecystokinin binding in hippocampus and frontal cortex of schizophrenic patients. Life Sci., 36, 473–477.

    Article  PubMed  CAS  Google Scholar 

  • Ferrier, I.N., Roberts, G.W., Crow, T.J. et al. (1983) Reduced CCK-Li and SST-Li in the limbic lobe is associated with negative symptoms in schizophrenia. Life Sci., 33, 475–482.

    Article  PubMed  CAS  Google Scholar 

  • Flor-Henry, P. (1983) Commentary and synthesis, in Laterality and Psychopathology (eds P. Flor-Henry and J. Gruzelier), Amsterdam, Elsevier North-Holland, pp. 1–18.

    Google Scholar 

  • Fonnum, F. (1984) Glutamate: a neurotransmitter in mamalian brain. J. Neurochem., 42, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Fowler, C.J., Carlsson, A. and Winblad, B. (1981) Monoamine oxidase-A and-B activities in the brain stem of schizophrenics and non-schizophrenic psychotics. J. Neural. Transm., 52, 23–32.

    Article  PubMed  CAS  Google Scholar 

  • Francis, P.T., Pangalos, M.N., Pearson, R.C.A. et al. (1992) 5-Hydroxytryptamine-1A but not 5-hydroxytryptamine-2 receptors are enriched on neocortical pyramidal neurones destroyed by intrastriatal volkensin. J. Pharmacol. Exp. Ther., 261, 1273–1281.

    PubMed  CAS  Google Scholar 

  • Frederiksen, S.I., Ekman, R., Gottfries, C.G. et al. (1991) Reduced concentrations of galanin, arginine vasopressin, neuropeptide Y and peptide YY in the temporal cortex but not in hypothalamus of brains from schizophrenics. Acta Psychiat. Scand., 83, 273–277.

    Article  PubMed  CAS  Google Scholar 

  • Friedhoff, A.J., Miller, J.C. and Weisefeund, J. (1978) Human platelet MAO in drug-free and medicated schizophrenic patients. Am. J. Psychiatry, 135, 952–955.

    PubMed  CAS  Google Scholar 

  • Friedman, E., Shopsin, B., Salthananthan, G. and Gershon, S. (1974) Blood platelet monoamine oxidase activity in psychiatric patients. Am. J. Psychiatry, 135, 952–955.

    Google Scholar 

  • Fuster, J. (1980) The Prefrontal Cortex, Raven Press, New York.

    Google Scholar 

  • Fuxe, K., Hökfelt, T., Agnmati, L. et al. (1975) Evidence for an inhibitory GABAergic control of the mesolimbic dopamine neurons: possiblity of improving treatment of schizophrenia by combined treatment with neuroleptics and GABAergic drugs. Med. Biol., 53, 177–183.

    PubMed  CAS  Google Scholar 

  • Gallant, D.M. and Bishop, M.P. (1968) Conanserin (SQ.10,643): a preliminary evaluation in chronic schizophrenic patients. Curr. Ther. Res., 10, 461–463.

    PubMed  CAS  Google Scholar 

  • Gattaz, W.F., Gasser, T. and Beckmann, H. (1985) Multidimensional analysis of the concentrations of 17 substances in the CSF of schizophrenics and controls. Biol. Psychiatry, 20, 360–365.

    Article  PubMed  CAS  Google Scholar 

  • Gerner, R.H., Catlin, D.H., Gorelick, D.A. et al. (1980) Beta-endorphin: intravenous infusion causes behavioural changes in psychiatric inpatients. Arch. Gen. Psychiatry, 37, 642–647.

    Article  PubMed  CAS  Google Scholar 

  • Gillin, J.C., Kaplan, J.A. and Wyatt, R.J. (1976) Clinical effects of tryptophan in chronic schizophrenia. Biol. Psychiatry, 11, 635–639.

    PubMed  CAS  Google Scholar 

  • Green, A.R. and Grahame-Smith, D.G. (1978) Processes regulating the functional activity of brain 5-hydroxytryptamine: results of animal experiments and their relevance to the understanding and treatment of depression. Pharmacopsychiatri. Neuropsychopharmakol, 11, 3–16.

    Google Scholar 

  • Greenamyre, J.T., Olsen J.M.M., Penney J.B. Jr and Young A.B. (1985) Autoradiographic characterisation of N-methyl-D-aspartate-, quisqualate-and kainate-sensitive glutamate binding sites. J. Pharmacol. Exp. Ther., 233, 254–263.

    PubMed  CAS  Google Scholar 

  • Gruen, R., Baron, M., Levitt, M. and Asnis, L. (1982) Platelet MAO activity and schizophrenic prognosis. Am. J. Psychiatry, 139, 240–241.

    PubMed  CAS  Google Scholar 

  • Gunne, L., Londström, L. and Terenius, L.M. (1977) Naloxone-induced reversal of schizophrenic hallucinations. J. Neural. Transm., 40, 13–19.

    Article  PubMed  CAS  Google Scholar 

  • Gur, R.E., Resnick, S.M., Alavi, A. et al. (1987) Regional brain function in schizophrenia. I. A positron emission tomography study. Arch. Gen. Psychiatry, 44, 119–125.

    Article  PubMed  CAS  Google Scholar 

  • Hanada, S., Mita, T., Nishimo, N. and Tanaka, C. (1987) [3H]Muscimol binding sites increased in autopsied brains of chronic schizophrenics. Life Sci., 40, 259–266.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, P.J., McLaughlin, D. and Kerwin, R.W. (1991) Decreased hippocampal expression of a glutamate receptor gene in schizophrenia. Lancet, 1, 450–452.

    Article  Google Scholar 

  • Hashimoto, S., Nishino, N., Nakai, H. and Tanaka, C. (1991) Increase in serotonin 5HT1A receptors in prefrontal and temporal cortices of brains from patients with chronic schizophrenia. Life Sci., 48, 355–363.

    Article  PubMed  CAS  Google Scholar 

  • Hess, E.J., Bracma, M.S., Kleinman, J.E. and Creese, I. (1987) Dopamine receptor subtype imbalance in schizophrenia. Life Sci., 40, 1487–1497.

    Article  PubMed  CAS  Google Scholar 

  • Holden, J.M.C., Keskiner, A. and Gannon, P. (1971) A clinical trial of an antiserotonin compound, cinanserin, in chronic schizophrenia. J. Clin. Pharmacol., 11, 220–226.

    CAS  Google Scholar 

  • Iadarola, M.J., Ofri, D and Kleinman, J.E. (1991) Enkephalin, dynorphin and substance P in post-mortem substantia nigra from normals and schizophrenic patients. Life Sci., 48, 1919–1930.

    Article  PubMed  CAS  Google Scholar 

  • Jacquet, Y.F. and Marks, N. (1976) The C-fragment of β-lipoprotein: an endogenous neuroleptic or antipsychotic. Science, 194, 632–635.

    Article  PubMed  CAS  Google Scholar 

  • Jakob, H. and Beckmann, H. (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J. Neural Transm., 65, 303–326.

    Article  PubMed  CAS  Google Scholar 

  • Janowsky, D.S., Segal, D.S., Bloom, F. et al. (1977) Lack of effect of naloxone on schizophrenic symptoms. Am. J. Psychiatry, 134, 926–927.

    PubMed  CAS  Google Scholar 

  • Johnston, J.P. (1968) Some observations on a new inhibitor of monoamine oxidase in brain tissue. Biochem. Pharmacol., 17, 1285–1297.

    Article  PubMed  CAS  Google Scholar 

  • Johnstone, E.C., Crow, T.J., Frith, C.D. et al. (1978) Mechanism of the antipsychotic effect in the treatment of acute schizophrenia. Lancet, 1, 848–851.

    Article  PubMed  CAS  Google Scholar 

  • Joseph, M.H., Baker, H.F., Johnstone, E.C. et al. (1976) Determination of 3-methoxy-4-hydroxyphenylglycol conjugates in urine. Application to the study of central noradrenaline metabolism in unmedicated chronic schizophrenic patients. Psychopharmacology, 51, 47–51.

    Article  PubMed  CAS  Google Scholar 

  • Jospeh, M.H., Baker, H.F., Crow, T.J. et al. (1979) Brain tryptophan metabolism in schizophrenia: a post-mortem study of metabolites of the serotonin and kynurenine pathways in schizophrenic and control subjects. Psychopharmacology, 62, 279–285.

    Article  PubMed  CAS  Google Scholar 

  • Kebabian, J.W. and Calne, D.B. (1979) Multiple receptors for dopamine. Nature, 271, 93–96.

    Article  Google Scholar 

  • Kerwin, R.W., Patel, S. and Meldrum, B.S. (1990) Quantitative autoradiographic analysis of glutamate binding sites in the hippocampal formation in normal and schizophrenic brain post-mortem. Neuroscience, 39, 25–32.

    Article  PubMed  CAS  Google Scholar 

  • Kerwin, R.W., Patel, S. and Meldrum, B.S. (1988) Asymmetrical loss of glutamate receptor sub-type in left hippocampus in schizophrenia. Lancet, 1, 583–584.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.S., Kornhuber, H.H., Schmid-Burgk, W. and Holzmuller, B. (1980) Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci. Lett, 20, 379–383.

    Article  PubMed  CAS  Google Scholar 

  • Kleinman, J.E., Iadorola, M., Govoni, S. et al. (1983) Post-mortem measurements of neuropeptides in human brain. Psychopharmacology, 8, 375–377.

    Google Scholar 

  • Kline, N.S., Li, C.H., Lehmann, H.E. et al. (1977) Beta-endorphin-induced changes in schizophrenia and depressed patients. Arch. Gen. Psychiatry, 34, 111–113.

    Article  Google Scholar 

  • Knoll, J. and Magyar, K. (1972) Some puzzling pharmacological effects of monoamine oxidase inhibitors. Adv. Biochem. Psychopharmacol., 5, 393–408.

    PubMed  CAS  Google Scholar 

  • Kornhuber, J., Mack-Burkhardt, F., Riederer, P. et al. (1989) 3H-MK-801 binding sites in postmortem brain regions of schizophrenic patients. J. Neural. Transm., 77, 231–236.

    Article  PubMed  CAS  Google Scholar 

  • Korpi, E.R., Kleinman, J.E., Goodman, S.I. and Wyatt, R.J. (1987) Neurotransmitter amino acids in post-mortem brains of chronic schizophrenic patients. Psychiatry Res., 22, 291–301.

    Article  PubMed  CAS  Google Scholar 

  • Kovelman, J.A. and Scheibel, A.B. (1986) Biological substrates of schizophrenia. Acta Neurol. Scand., 73, 1–32.

    Article  PubMed  CAS  Google Scholar 

  • Lauer, J.W., Inskip, W.M., Bernsohn, J and Zeller, E.A. (1958) Observations on schizophrenic patients after iproniazid and tryptophan-AMA. Arch. Neurol. Psychiatry, 80, 122–130.

    Article  CAS  Google Scholar 

  • Lee, T. and Seeman, P. (1980) Elevation of brain neuroleptic-dopamine receptors in schizophrenia. Am. J. Psychiatry, 137, 191–197.

    PubMed  CAS  Google Scholar 

  • Lee, T., Seeman, P., Tourtellotte, W.W. et al. (1978) Binding of 3H-neuroleptics and 3H-apomorphine in schizophrenic brains. Nature, 274, 897–900.

    Article  PubMed  CAS  Google Scholar 

  • Leyson, J.E., Niemegeers, C.J.E., Tollenaere, J.P. et al. (1978) Serotonergic component of neuroleptic receptors. Nature, 272, 168–171.

    Article  Google Scholar 

  • Lightman, S.L., Spokes, E.G., Sagnella, G.A. et al. (1979) Distribution of β-endorphin in normal and schizophrenic human brains. Eur. J. Clin. Invest., 9, 377–379.

    Article  PubMed  CAS  Google Scholar 

  • Lindström, L.H., Widerlöv, E., Gunne, L.M. et al. (1978) Endorphins in human cerebrospinal fluids: clinical correlations to some psychotic states. Acta Psychiat. Scand., 57, 152–164.

    Google Scholar 

  • Luby, E.D., Cohen B.D., Rosenbaum G. et al. (1959) Study of a new schizophrenomimetic drug, Sernyl. Arch. Neurol. Psychiatry, 81, 363–369.

    Article  CAS  Google Scholar 

  • Lyon, M., Barr, C.E., Cannon, T.D. et al. (1989) Fetal neural development and schizophrenia. Schizophrenia Bull., 15, 149–161.

    Article  CAS  Google Scholar 

  • Maas, J.W. and Landis, D.H. (1968) In vivo studies of the metabolism of norepinephrine in the central nervous system. J. Pharmacol. Exp. Ther., 163, 147–162.

    PubMed  CAS  Google Scholar 

  • Maas, J.W., Dekirmenjian, H., Garver, D. et al. (1973) Excretion of catecholamine metabolites following intraventricular injection of 6-hydroxydopamine in the macaca speciosa. Eur. J. Pharmacol., 23, 121–130.

    Article  PubMed  CAS  Google Scholar 

  • Mackay, A.V.P., Bird, E.D., Spokes, E.G. et al. (1980) Dopamine receptors and schizophrenia: drug effect or illness. Lancet, 2, 915–916.

    Article  PubMed  CAS  Google Scholar 

  • Mann, J. and Thomas, J.M. (1979) Platelet monoamine oxidase activity in schizophrenia. Br. J. Psychiatry, 134, 366–371.

    Article  PubMed  CAS  Google Scholar 

  • Mann, J.J., Kaplan, R.D., Georgotas, A. et al. (1981) Monoamine oxidase activity and enzyme kinetics in three subpopulations of density-fractionated platelets in chronic paranoid schizophrenics. Psychopharmacology, 74, 344–348.

    Article  PubMed  CAS  Google Scholar 

  • Manowitz, P., Gilmour, D.G. and Raceuskis, J. (1973) Low plasma tryptophan levels in recently hospitalized schizophrenics. Biol. Psychiatry, 6, 109–118.

    PubMed  CAS  Google Scholar 

  • Manschrek, T.C. (1986) Motor abnormalities in schizophrenia, in Handbook of Schizophrenia, Vol.1: The Neurology of Schizophrenia, (eds H.A. Nasrallah and D.R. Weinberger), Elsevier Science Publishers, pp. 65-96.

    Google Scholar 

  • Martinot, J.L., Peron-Magnan, P., Huret, J.D. et al. (1990) Striatal D2 dopaminergic receptors assessed with positron emission tomography and [76Br]bromospiperone in untreated schizophrenic patients. Am. J. Psychiatry, 147, 44–50.

    PubMed  CAS  Google Scholar 

  • Mathew, R.J., Partian, C.L., Prakash, R. et al. (1985) A study of the septum pellucidum and corpus callosum in schizophrenia with MR imaging. Acta Psychiat. Scand., 11, 414–421.

    Article  Google Scholar 

  • McGeer, P.L. and McGeer, E.G. (1977) Possible changes in striatal and limbic cholinergic systems in schizophrenia. Arch. Gen. Psychiatry, 34, 1319–1323.

    Article  PubMed  CAS  Google Scholar 

  • Miller, R.J., Horn, A.S. and Iversen, L.L. (1974) The action of neuroleptic drugs on dopamine stimulated-3′-5′-monophosphate production in neostriatum and limbic forebrain. Mol. Pharmacol., 10, 759–766.

    CAS  Google Scholar 

  • Morris R.G.M., Anderson E., Lynch G.S. and Baudry M. (1986) Selective impairment of learning and blockade of long term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature, 319, 774–776.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, D.L., Belmaker, R. and Wyatt, R.J. (1974) Monoamine oxidase in schizophrenia and other behaviour disorders. J. Psychiatry. Res., 11, 221–247.

    Article  CAS  Google Scholar 

  • Murphy, D.L. and Wyatt, R.J. (1972) Reduced platelet monoamine oxidase activity in chronic schizophrenia. Nature, 238, 225–226.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, D.L., Donelly, C.H., Miller, L. and Wyatt, R.J. (1976). Platelet monoamine oxidase in chronic schizophrenia: some enzyme characteristics relevant to reduced activity. Arch. Gen. Psychiatry, 33, 1377–1381.

    Article  PubMed  CAS  Google Scholar 

  • Naber, D., Pickar, D., Post, R.M. et al. (1981) Endogenous opioid activity and β-endorphin immunoreactivity in CSF of psychiatric patients and normal volunteers. Am. J. Psychiatry, 138, 1457–1462.

    PubMed  CAS  Google Scholar 

  • Nair, N.P.V., Lal, S. and Bloom, D.M. (1985) Cholecystokinin peptides, dopamine and schizophrenia — a review. Prog. Neuropsychopharmacol. Biol. Psychiatry, 9, 515–524.

    Article  PubMed  CAS  Google Scholar 

  • Nemeroff, C.B., Mawberg, P.J. Widerlöv, E. et al. (1983) Neuropeptides in cerebrospinal fluid and post-mortem brain tissue of schizophrenics, Huntington’s choreics and normal controls. Psychopharmacol. Bull., 19, 369–374.

    Google Scholar 

  • Nishikawa, T., Takasima, M. and Toru, M. (1983) Increased 3H-kainic acid binding in the pre-frontal cortex in schizophrenia. Neurosci. Lett., 40, 245–250.

    Article  PubMed  CAS  Google Scholar 

  • O’Leary, D.D.M., Stanfield B.B. and Cowan W.M. (1981) Evidence that the early postnatal restriction of the cells of origin of the callosal projection is due to the elimination of axon collaterals rather than to the death of neurones. Dev. Brain Res., 1, 607–617.

    Article  Google Scholar 

  • Owen, F., Bourne, R.C., Crow, T.J. et al. (1976) Platelet monoamine oxidase in schizophrenia: an investigation in drug-free chronic hospitalized patients. Arch. Gen. Psychiatry., 33, 1370–1373.

    Article  PubMed  CAS  Google Scholar 

  • Owen, F., Cross, A.J., Crow, T.J. et al. (1978) Increased dopamine receptor sensitivity in schizophrenia. Lancet, 2, 223–226.

    Article  PubMed  CAS  Google Scholar 

  • Owen, F., Bourne, R.C., Crow, T.J. et al. (1981b) Platelet monoamine oxidase activity in actute schizophrenia: relationship to symptomatology and neuroleptic mediation. Br. J. Psychiatry, 139, 16–22.

    Article  PubMed  CAS  Google Scholar 

  • Owen, F., Cross, A.J., Crow, T.J. et al. (1981a) Neurotransmitter receptors in brain in schizophrenia. Acta Psychiat. Scand. (Suppl. 291), 63, 20–28.

    Article  Google Scholar 

  • Owen, F., Bourne, R.C., Poulter, M. et al. (1985) Tritiated etorphine and naloxone binding to opioid receptors in caudate nucleus in schizophrenics. Br. J. Psychiatry, 21, 507–509.

    Article  Google Scholar 

  • Owen, F., Crow, T.J., Frith, C.D. et al. (1987) Selective decreases in MAO-B activity in post-mortem brains from schizophrenic patients with Type II syndrome. Br. J. Psychiatry, 151, 514–519.

    Article  PubMed  CAS  Google Scholar 

  • Peinado, J.M. and Mora, F. (1986) Glutamic acid as a putative transmitter of the interhemispheric corticocortical connections in the rat. J. Neurochem., 47, 1598–6030.

    Article  PubMed  CAS  Google Scholar 

  • Perry, T.L. (1982) Normal cerebrospinal fluid and glutamate levels do not support the hypothesis of glutaminergic neuronal dysfunction. Neurosci. Lett., 28, 81–85.

    Article  PubMed  CAS  Google Scholar 

  • Perry, T.L., Hansen, S. and Jones, K. (1989) Schizophrenia, tardive dyskinesia and brain GABA. Biol. Psychiatry, 25, 200–206.

    Article  PubMed  CAS  Google Scholar 

  • Perry, T.L., Kish, S.J., Buchanan, J. and Hansen, S. (1979) γ-Aminobutyric-acid deficiency in brain of schizophrenic patients. Lancet, 1, 237–239.

    Article  PubMed  CAS  Google Scholar 

  • Peterson R.C. and Stillman R.C. (1978) Phencyclidine: an overview, in Phencyclidine Abuse: An Appraisal. Natl. Inst. Drug Abuse Res. Monograph 21, 1–7.

    Google Scholar 

  • Pickar, D., David, G.C., Schulz, S.C. et al. (1981) Behavioural and biological effects of acute beta-endorphin injection in schizophrenic and depressed patients. Am. J. Psychiatry, 138, 160–166.

    PubMed  CAS  Google Scholar 

  • Pickar, D., Vartanian, F., Bunney Jr, W.E. et al. (1982) Short-term naloxone administration in schizophrenic and manic patients. Arch. Gen. Psychiatry, 39, 313–319.

    Article  PubMed  CAS  Google Scholar 

  • Pollin, W., Cardin, P.V. and Kety, S.S. (1961) Effects of amino acid feedings in schizophrenic patients treated with isoniazid. Science, 133, 104–105.

    Article  PubMed  CAS  Google Scholar 

  • Post, R.M., Fink, E., Carpenter, W.T. et al. (1975) Cerebro-spinal fluid amine metabolites in acute schizophrenia. Arch. Gen. Psychiatry, 32, 1063–1069.

    Article  PubMed  CAS  Google Scholar 

  • Randrup, A. and Munkvad, I. (1966) On the role of dopamine in the amphetamine excitatory response. Nature, 211, 540.

    Article  PubMed  CAS  Google Scholar 

  • Randrup, A. and Munkvad, I. (1972) Evidence indicating an association between schizophrenia and dopaminergic hyperactivity in the brain. Orthomol. Psychiatry, 1, 2–7.

    Google Scholar 

  • Reisine, T.D., Rossor, M., Spokes, E. et al. (1980) Opiate and neuroleptic receptor alterations in human schizophrenic brain tissue. Adv. Biochem. Psychopharmacol., 21, 443–450.

    PubMed  CAS  Google Scholar 

  • Revely, M.A., Glover, V., Sandler, M. and Spokes, E.G. (1981) Brain monoamine oxidase activity in schizophrenics and controls. Arch. Gen. Psychiatry, 38, 663–665.

    Article  Google Scholar 

  • Reynolds, G.P. (1983) Increased concentrations and lateral asymmetry of amygdala dopamine in schizophrenia. Nature, 305, 527–528.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, G.P., Reynold, L.M., Riederer, P. et al. (1980) Dopamine receptors and schizophrenia: drug effect or illness. Lancet, 2, 1251.

    Article  PubMed  CAS  Google Scholar 

  • Rimon, R., Terenius, L. and Kampman, R. (1980) Cerebrospinal fluid endorphins in schizophrenia. Acta Psychiat. Scand., 61, 395–403.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, E. (1972) An hypothesis suggesting that there is a defect in the GABA system in schizophrenia. Neurosci. Res. Prog. Bull., 10, 468–482.

    CAS  Google Scholar 

  • Roberts, E. (1977) The γ-aminobutyric acid system and schizophrenia, in Neuroregulators and Psychiatric Disorders (eds E. Usdin and J.D. Barchas), Oxford University Press, pp. 347-57.

    Google Scholar 

  • Roberts, G.W. and Crow, T.J. (1987) The neuropathology of schizophrenia: a progress report. Br. Med. Bull., 43, 599–615.

    PubMed  CAS  Google Scholar 

  • Roberts, G.W., Ferner, I.N., Lee, Y. et al. (1983) Peptides, the limbic lobe and schizophrenia. Brain Res., 288, 199–211.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, D.S., Lovenberg, W., Keiser, H. and Sjoerdsma, A. (1968) Effects of drugs on human blood platelet and plasma amine oxidase activity in vitro and in vivo. Biochem. Pharmacol., 17, 109–119.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, M.A., Aikens, A.N. and Wyatt, R.J. (1974) Monoamine oxidase activity in brains from schizophrenics and mentally normal individuals. Psychopharmacologia, 38, 319–328.

    Article  PubMed  CAS  Google Scholar 

  • Sedvall, G.C., Blomqvist, G., DePaulis, E. et al. (1984) PET studies on brain energy metabolism and dopamine receptors in schizophrenic patients and monkeys, in Psychiatry; The State of the Art, Vol. 2. Plenum Press, New York, pp. 305–312.

    Google Scholar 

  • Sedvall, G., Farde, L., Persson, A. and Wiese, F.A. (1986) Imaging of neurotransmitter receptors in the living human brain. Arch. Gen. Psychiatry, 43, 995–1005.

    Article  PubMed  CAS  Google Scholar 

  • Seeman, P., Chau-Wong, M., Tedesco, J. et al. (1975) Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc. Natl Acad. Sci. USA, 11, 4375–4380.

    Google Scholar 

  • Seeman, P., Lee, T., Chau-Wong, M. et al. (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature, 261, 717–719.

    Article  PubMed  CAS  Google Scholar 

  • Shelton, R.C. and Weinberger D.R. (1986) X-ray computerised tomography studies of schizophrenia: a review and synthesis, in The Neurology of schizophrenia (eds H.A. Nasrallah and D.R. Weinberger), Elsevier, Amsterdam, pp. 537–583.

    Google Scholar 

  • Sherman, A.D., Davidson, A.T., Baruah, S. et al., (1991) Evidence of glutamatergic deficiency in schizophrenia. Neurosci. Lett., 121, 77–80.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, M.D.C., Slater, P. and Deakin, J.F.W. (1993) Asymmetric changes in the neurochemical morphology of ventromedial frontal cortex in schizophrenia. Schizophrenia Res., in press.

    Google Scholar 

  • Simpson, M.D.C., Slater, P., Deakin, J.F.W. et al. (1989) Reduced GABA uptake sites in the temporal lobe in schizophrenia. Neurosci, Lett. 107, 211–215.

    Article  CAS  Google Scholar 

  • Simpson, G.M., Lee, J.H., Shrivastva, R.K. and Branchy, M.M. (1975) Baclofen in schizophrenia. Lancet, 1, 966–967.

    Google Scholar 

  • Simpson, M.D.C., Slater, P., Royston, M.C. and Deakin, J.F.W. (1992) Alterations in phencyclidine and sigma binding sites in schizophrenic brains: effects of disease process and neuroleptic medication. Schizophrenia Res., 6, 41–48.

    Article  Google Scholar 

  • Stein, L. and Wise, C.D. (1971) Possible etiology of schizophrenia: progressive damage to the noradrenergic reward system by 6-hydroxydopamine. Science, 171, 1032–1036.

    Article  PubMed  CAS  Google Scholar 

  • Sunahara, R.K., Guan, H.C., O’Dowd, B.F. et al. (1991) Cloning a human dopamine D5 gene with higher affinity for dopamine than D1. Nature, 350, 614–617.

    Article  PubMed  CAS  Google Scholar 

  • Szechtman, H., Nahmias, C., Garnett, S. et al. (1988) Effect of neuroleptics on altered cerebral glucose metabolism in schizophrenia. Arch. Gen. Psychiatry, 45, 523–532.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, S., Yamane, H. and Naosuke, T. (1975) Reduction in blood platelet monoamine oxidase in schizophrenic patients on phenothiazines. Fol. Psychiat. Neurol. Jpn, 29, 207–214.

    CAS  Google Scholar 

  • Tamminga, C.A., Clayton, J.W. and Chase, T.N. (1978) Muscimol: GABA agonist therapy in schizophrenia. Am. J. Psychiatry, 135, 746–747.

    PubMed  CAS  Google Scholar 

  • Terenius, L., Wahlström, A., Lindström, C. and Widerlöv, E. (1976) Increased CSF levels of endorphins in chronic psychosis. Neurosci. Lett., 3, 157–162.

    Article  PubMed  CAS  Google Scholar 

  • Toru, R.W., Watanbe, S., Shibuya, H. et al. (1988) Neurotransmitters, receptors and neuropeptides in post-mortem brains of schizophrenic patients. Acta Psychiat. Scand., 78, 121–137.

    Article  PubMed  CAS  Google Scholar 

  • Uhl, G.R. and Kuhar, M.J. (1984) Chronic neuroleptic treatment enhances neurotensin receptor binding in human and rat substantia nigra. Nature, 309, 350–352.

    Article  PubMed  CAS  Google Scholar 

  • Van Praag, H.M., Verhoeven, W.M.A., Van Ree, J.M. and De Wied, D. (1982) The treatment of schizophrenic psychoses with gamma-tyr-endorphins. Biol. Psychiatry, 17, 83–98.

    PubMed  Google Scholar 

  • Van Ree, J.M., De Weid, D., Verhoeven, W.M.A. and Van Praag, J. (1980) Antipsychotic effect of gamma-tyr endorphins in schizophrenia. Lancet, 2, 1363–1364.

    PubMed  Google Scholar 

  • Verhoeven, W.M.A., Van Praag, H.M., Van Ree, J.M. and De Wied, D. (1979) Improvement of schizophrenic patients treated with (des-tyr′γ-gammaendorphin (DT7E). Arch. Gen. Psychiatry, 36, 294–298.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, W.H., Orfei, V. and Century, B. (1969) Activities of enzymes involved in the formation and destruction of biogenic amines in various areas of human brain. J. Pharmacol. Exp. Ther., 165, 196–203.

    PubMed  CAS  Google Scholar 

  • Volovka, J., Mallya, A., Baig, S. and Perez-Cruet, J. (1977) Naloxone in chronic schizophrenia. Science, 196, 1227–1228.

    Article  Google Scholar 

  • Whittaker, P.M., Crow, T.J. and Ferrier, I.N. (1981) Tritiated LSD binding in frontal cortex in schizophrenia. Arch. Gen. Psychiatry, 38, 278–280.

    Article  Google Scholar 

  • Wise, C.D., Baden, M.M. and Stein, L. (1974) Post-mortem measurement of enzymes in human brain: evidence of a central noradrenergic deficit in schizophrenia. J. Psychiatry Res., 11, 185–198.

    Article  CAS  Google Scholar 

  • Wise, C.D. and Stein, L. (1973) Dopamine-β-hydroxylase deficits in the brains of schizophrenic patients. Science, 181, 344–347.

    Article  PubMed  CAS  Google Scholar 

  • Wong, D.F., Wagner, Jr, H.N., Tune, L.E. et al. (1986) Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science, 234, 1558–1562.

    Article  PubMed  CAS  Google Scholar 

  • Wooley, D.W. and Shaw, E. (1954) A biochemical and pharmacological suggestion about certain mental disorders. Proc. Natl Acad. Sci. USA, 40, 228–231.

    Article  Google Scholar 

  • Wyatt, R.J., Vaughan, T., Calanter, M. et al. (1972) Behavioural changes of chronic schizophrenic patients given L-5-hydroxytryptophan. Science, 177, 1124–1126.

    Article  PubMed  CAS  Google Scholar 

  • Wyatt, R.J., Murphy, D.L., Belmaker, R. et al. (1973) Reduced monoamine oxidase activity in platelets. A possible genetic marker for vulnerability to schizophrenia. Science, 179, 916–918.

    Article  PubMed  CAS  Google Scholar 

  • Wyatt, R.J., Schwartz, M.A., Erdely, E. et al. (1975) Dopamine-β-hydroxylase activity in brains of chronic schizophrenic patients. Science, 187, 368–370.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Owen, F., Simpson, M. (1994). The neurochemistry of schizophrenia. In: Owen, F., Itzhaki, R. (eds) Molecular and Cell Biology of Neuropsychiatric Diseases. Molecular and Cell Biology of Human Diseases Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0709-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0709-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4305-2

  • Online ISBN: 978-94-011-0709-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics