Skip to main content

Part of the book series: Molecular and Cell Biology of Human Diseases Series ((Mol. Cell Biol. Hu. Dis.))

  • 68 Accesses

Abstract

A genetic basis for Alzheimer’s disease (AD) has been demonstrated in only a very few patients with early onset disease. Most patients have no family history, and the pathogenesis is probably multifactorial, with affected individuals having possibly an inherited higher-than-normal susceptibility to a specific factor or agent. However, at present, the only certain risk factors for AD are age (although, fortunately, AD is not an invariable consequence of growing old) and Down’s syndrome (DS). Other possible factors include toxins, transmissible agents, DNA repair defects, and head trauma. Each of these will be discussed in detail below.

Every man desires to live long; but no man would be old.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alafuzoff, I., Adolfsson, R., Buckt, G. et al. (1983) Albumin and immunoglobulin in plasma and cerebrospinal fluid, and blood-cerebrospinal fluid barrier function in patients with dementia of Alzheimer type and multi-infarct dementia. J. Neurol. Sci., 60, 465–472.

    PubMed  CAS  Google Scholar 

  • Alfrey, A.C., Legendre, G.R. and Kaheny, W.D. (1976) The dialysis encephalopathy syndrome. Possible aluminium intoxication. N. Engl. J. Med., 294, 184–188.

    PubMed  CAS  Google Scholar 

  • Ball, M.J. (1982) Limbic predilection in Alzheimer dementia: is reactivated herpes virus involved? Can. J. NeuroL Sci., 9, 303–306.

    PubMed  CAS  Google Scholar 

  • Ball, M.J. (1986) Herpes virus in the hippocampus as a cause of Alzheimer’s disease. Arch. Neurol., 43, 313.

    PubMed  CAS  Google Scholar 

  • Banin, E. and Meiri, H. (1987) Impaired control of information transfer at an isolated synapse treated by aluminum: is it related to dementia? Brain Res., 423, 359–363.

    PubMed  CAS  Google Scholar 

  • Banks, W.A. and Kastin, A.J. (1989) Aluminum-induced neurotoxicity: alterations in membrane function at the blood-brain barrier. Neurosci. Biobehav. Rev., 13, 47–53.

    PubMed  CAS  Google Scholar 

  • Barker, J., Day, J.P., Aitken, T.W. et al. (1990) Development of 26A1 accelerator mass spectometry for biological and toxicological applications. Nucl. Instrum. Methods Phys. Res., B52, 540–543.

    CAS  Google Scholar 

  • Beal, M.F., Mazurek, M.F., Ellison, D.W. et al. (1989) Neurochemical characteristics of aluminum-induced neurofibrillary degeneration in rabbits. Neuroscience, 29, 339–346.

    PubMed  CAS  Google Scholar 

  • Bertholf, R.L. (1987) Aluminum and Alzheimer’s disease: perspectives for a cytoskeletal mechanism. CRC Crit. Rev. Clin. Lab. Sci., 25, 195–210.

    CAS  Google Scholar 

  • Bertholf, R.L., Herman, M.M., Savory, J. et al. (1989) A long-term intravenous model of aluminum maltol toxicity in rabbits: tissue distribution, hepatic, renal and neuronal cytoskeletal changes associated with systemic exposure. Toxicol. Appl. Pharmacol., 98, 58–74.

    PubMed  CAS  Google Scholar 

  • Bharucha, N.E., Schoenberg, B.S. and Kokmen, E. (1983) Dementia of Alzheimer’s type (DAT): a case-control study of association with medical conditions and surgical procedures. Neurology, 33(Suppl. 2), 85.

    Google Scholar 

  • Birchall, J.D. and Chappell, J.S. (1988) Aluminium, chemical physiology and Alzheimer’s disease. Lancet, 2, 1008–1010.

    PubMed  CAS  Google Scholar 

  • Bizzi, A., Crane, R.C., Gambetti, A. et al. (1984) Aluminum effect on slow axonal transport: a novel impairment of neuro-filament transport. J. Neurosci., 4, 722–731.

    PubMed  CAS  Google Scholar 

  • Bizzi, A. and Gambetti, P. (1986) Phosphorylation of neurofilaments is altered in aluminium intoxication. Acta Neuropathol., 71, 154–158.

    PubMed  CAS  Google Scholar 

  • Boerrigter, M.E.T.I., Van Duijn, C.M., Mullaart, E. et al. (1991) Decreased DNA repair capacity in familial, but not in sporadic Alzheimer’s disease. Neurobiol. Ageing, 12, 367–370.

    CAS  Google Scholar 

  • Bonhaus, D.W., McCormack, K.M., Mayer, G.H. et al. (1980) The effects of aluminum on microtubular integrity using in vitro and in vivo models. Toxicol. Lett., 6, 141–147.

    PubMed  CAS  Google Scholar 

  • Borenstein Graves, A.B., White, E., Keopsell, T.D. et al. (1990) The association between aluminum-containing products and Alzheimer’s disease. J. Clin. Epidemiol., 43, 35–44.

    Google Scholar 

  • Bugiani, O. and Ghetti, B. (1982) Progressing encephalomyelopathy with muscular atrophy, induced by aluminum power. Neurobiol. Ageing, 3, 209–222.

    CAS  Google Scholar 

  • Cabrera, C.V., Wohlenberg, C., Openshaw, H. et al. (1980) Herpes simplex virus DNA sequences in the CNS of latently infected mice. Nature, 228, 288–290.

    Google Scholar 

  • Candy, J.M., Klinowski, J., Perry, R.H. et al. (1986) Aluminosilicates and senile plaque formation in Alzheimer’s disease. Lancet, 1, 354–356.

    PubMed  CAS  Google Scholar 

  • Candy, J.M., McArthur, F.K., Oakley, A.E. et al. (1992) Aluminium accumulation in relation to senile plaque and neurofibrillary tangle formation in the brains of patients with renal failure. J. Neurol. Sci., 107, 210–218.

    PubMed  CAS  Google Scholar 

  • Chafi, A.H., Hauw, J-J., Rancurel, G. et al. (1991) Absence of aluminium in Alzheimer’s disease brain tissue: electron microprobe and ion microbrobe studies. Neurosci. Lett., 123, 61–64.

    PubMed  CAS  Google Scholar 

  • Chandra, V., Kokmen, E. and Schoenberg, B.S. (1987) Head trauma with loss of consciousness as a risk factor for Alzheimer’s disease using prospectively collected data. Neurology, 37(Suppl. 2), 152.

    Google Scholar 

  • Cole, G.M., Wu, K. and Timiras, P.S. (1985) A culture model for age-related human neurofibrillary pathology. Int. J. Dev. Neurosci., 3, 23–32.

    CAS  Google Scholar 

  • Colin-Jones, D., Langman, M.J.S., Dawson, D.W. et al. (1989) Alzheimer’s disease in antacid users. Lancet, 1, 1453.

    PubMed  CAS  Google Scholar 

  • Corder, E.H., Saunders, A.M., Strittmatter, W.J. et al. (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261, 921–923.

    PubMed  CAS  Google Scholar 

  • Corsellis, J.A.N., Bruton, C.J. and Freeman-Browne, D. (1973) The aftermath of boxing. Psychol. Med., 3, 270–303.

    PubMed  CAS  Google Scholar 

  • Crapper, D.R. and Dalton, A.J. (1973) Alterations in short-term retention, conditioned avoidance response, acquisition and motivation following aluminum induced neurofibrillary degeneration. Physiol. Bebav., 10, 925.

    CAS  Google Scholar 

  • Crapper, D.R., Krishnan, S.S and Dalton A.J. (1973) Brain aluminum distribution in Alzheimer’s disease and especially neurofibrillary degeneration. Science,, 180, 511.

    PubMed  CAS  Google Scholar 

  • Crapper, D.R., Krishnan, S.S and Quittkat, S. (1976) Aluminium, neurofibrillary degeneration and Alzheimer’s disease. Brain, 99, 67–80.

    PubMed  CAS  Google Scholar 

  • Crapper, D.R., Quittkat, S., Krishnan, S.S. et al. (1980) Intranuclear aluminum content in Alzheimer’s disease, dialysis encephalopathy, and experimental aluminum encephalopathy. Acta Neuropathol., 50, 19–24.

    PubMed  CAS  Google Scholar 

  • Crapper-McLachlan, D.R., Dalton, A.J., Kruck, T.P.A. et al. (1991) Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet, 337, 1304–1308.

    PubMed  CAS  Google Scholar 

  • Dahl, D. and Bignami, A. (1978) Immunochemical cross-reactivity of normal neurofibrils and aluminum-induced neurofibrillary tangles. Immunofluorescence study with antineurofilament serum. Exp. Neurol., 58, 74–80.

    PubMed  CAS  Google Scholar 

  • Day, J.P., Barker, J., Evans, L.J.A. et al. (1991) Aluminium absorption studied by 26A1 tracer. Lancet, 337, 1345.

    PubMed  CAS  Google Scholar 

  • Deatly, A.M., Haase, A.T., Fewster, P.H. et al. (1990) Human herpes virus infections and Alzheimer’s disease. J. NeuropathoL Appl. Neurobiol., 16, 213–223.

    CAS  Google Scholar 

  • Diaz-Nido, J. and Avila, J. (1990) Aluminum induces the in vitro aggregation of bovine brain cytoskeletal proteins. Neurosci. Lett., 110, 221–226.

    PubMed  CAS  Google Scholar 

  • Dobson, C.B., Templar, J., Day, J.P. and Itzhaki, R.F. (1993) Aluminium and Alzheimer’s disease: sites of aluminium-binding in human neuroblastoma cells. Biocbem. Soc. Trans., 21, 321.

    Google Scholar 

  • Edwards, J.A., Wang, L.-G., Setlow, R.B. et al. (1989) O6 Methylguanine-DNA methyltransferase in lymphocytes of the elderly with and without Alzheimer’s disease. Mutat. Res., 219, 267–272.

    PubMed  CAS  Google Scholar 

  • Epstein, S.G. (1988) Aluminum intake and its effects, in Environmental Geochemistry and Health, (ed. I. Thornton), Science Rev. Ltd., Northwood, pp. 189–200.

    Google Scholar 

  • Esiri, M.M. (1982) Viruses and Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry, 45, 759.

    PubMed  CAS  Google Scholar 

  • Esiri, M.M. (1987) Typical and atypical viruses in the aetiology of SDAT, in Histology and Histopathology of the Ageing Brain, (ed. J. Ulrich), Karger, Basel.

    Google Scholar 

  • Farnell, B.J., deBoni, B. and Crapper-McLachlan, D.R. (1982) Aluminum neurotoxicity in the absence of neurofibrillary degeneration of CA1 hippocampal pyramidal neurons in vitro. Exp. Neurol., 78, 241–258.

    PubMed  CAS  Google Scholar 

  • Farnell, B.J., Crapper-McLachlan, D.R., Bainbridge, K. et al. (1985) Calcium metabolism in aluminum encephalopathy. Exp. Neurol., 88, 68–83.

    PubMed  CAS  Google Scholar 

  • Farrar, G., Altmann, P., Welch, S. et al. (1990) Defective gallium-transferrin binding in Alzheimer disease and Down syndrome: possible mechanism for accumulation of aluminium in brain. Lancet, 335, 747–750.

    PubMed  CAS  Google Scholar 

  • Flaten, T.P. (1990) Geographical associations between aluminium in drinking water and death rates with dementia (including Alzheimer’s disease), Parkinson’s disease and amyotrophic lateral sclerosis in Norway. Environ. Geochem. Health, 12, 152–167.

    CAS  Google Scholar 

  • Forbes, W.F., Hayward, L.M., Agwani, N. (1991) Dementia, aluminium and fluoride. Lancet, 338, 1592–1593.

    PubMed  CAS  Google Scholar 

  • Fraser, N.W., Lawrence, W.C., Wroblewska, Z. et al. (1981) Herpes simplex type 1 DNA in human brain tissue. Proc. Natl. Acad. Sci. USA, 78, 6461–6465.

    PubMed  CAS  Google Scholar 

  • Friedland, R.P., May, C. and Dahlberg, J. (1990) The viral hypothesis of Alzheimer’s disease. Absence of antibodies to lentiviruses. Arch. Neurol., 47, 177–178.

    PubMed  CAS  Google Scholar 

  • Gajdusek, D.C. and Gibbs, C.J. Jr. (1971) Transmission of two subacute spongiform encephalopathies of man (Kuru and Creutzfeldt-Jakob disease) to New Worldmonkeys. Nature, 230, 588–591.

    PubMed  CAS  Google Scholar 

  • Galle, P., Berry, J.P. and Duckett, S. (1980) Electron microprobe ultrastructural localization of aluminium in rat brain. Acta Neuropathol., 49, 245–247.

    PubMed  CAS  Google Scholar 

  • Ganrot, P.O. (1986) Metabolism and possible health effects of aluminum. Environ. Health Perspect., 65, 363–441.

    PubMed  CAS  Google Scholar 

  • Good, P.F., Perl, D.P., Bierer, L.M., et al. (1992) Selective accumulation of aluminium and iron in the neurofibrillary tangles of Alzheimer’s disease: A laser microprobe (LAMMA) study. Ann. Neurol., 31, 286–292.

    PubMed  CAS  Google Scholar 

  • Guy, S.P., Seabright, P., Day, J.P. et al. (1990) Uptake of aluminium by human neuroblastoma cells. J. Trace Element Electrol. Health Dis., 4, 183–187.

    CAS  Google Scholar 

  • Guy, S.P., Jones, D., Mann, D.M.A. et al. (1991) Human neuroblastoma cells treated with aluminium express an epitope associated with Alzheimer’s disease neurofibrillary tangles. Neurosci. Lett., 121, 166–168.

    PubMed  CAS  Google Scholar 

  • Harris, A.B. (1973) Ultrastructural and histochemistry of alumina in cortex. Exp. Neurol., 38, 33–63.

    PubMed  CAS  Google Scholar 

  • Heston, L.L., Mastri, A.R., Anderson, V.E. et al. (1981) Dementia of the Alzheimer’s type: clinical, genetics, natural history, and associated conditions. Arch. Gen. Psychiatry, 38, 1085–1090.

    PubMed  CAS  Google Scholar 

  • Hewitt, C.D., Herman, M.M., Lopes, M.B.S. et al. (1991) Aluminium maltolinduced neurocytoskeletal changes in fetal rabbit midbrain in matric culture. Neuropathol. Appl. Neurobiol., 17, 47–60.

    PubMed  CAS  Google Scholar 

  • Heyman, A., Wilkinson, W.E., Hurwitz, B.J. et al. (1983) Alzheimer’s disease: genetic aspects and associated clinical disorders. Ann. Neurol., 14, 507–515.

    PubMed  CAS  Google Scholar 

  • Heyman, A., Wilkinson, W.E., Stafford, J.A. et al. (1984) Alzheimer’s disease: a study of epidemiological aspects. Ann. Neurol., 15, 335–341.

    PubMed  CAS  Google Scholar 

  • Itzhaki, R.F. (1988) Detection of viral genes in neurological disease, in The Molecular Biology of Neurological Disease, (eds R.N. Rosenberg and A.E. Harding), Butterworths, London, pp. 219–233.

    Google Scholar 

  • Jamieson, G.A., Maitland, N.J. and Itzhaki, R.F. (1992) Herpes simplex virus type 1 DNA sequences are present in aged normal and Alzheimer’s disease brain but absent in lymphocytes. Arch. Gerontol. Geriat., Suppl. 3, 197–202.

    Google Scholar 

  • Jamieson, G.A., Maitland, N.J., Wilcock, G.K. et al. (1991) Latent herpes simplex virus type 1 in normal and Alzheimer’s diseased brains. J. Med. Virol., 33, 224–227.

    PubMed  CAS  Google Scholar 

  • Jamieson, G.A., Maitland, N.J., Wilcock, G.K. et al. (1992) Herpes simplex virus type 1 DNA is present in specific regions of brain from aged people with and without senile dementia of the Alzheimer type. J. Pathol., 167, 365–368.

    PubMed  CAS  Google Scholar 

  • Johnson, G.V.W. and Jope, R.S. (1988) Phosphorylation of rat brain cytoskeletal proteins is increased after orally administered aluminum. Brain Res., 456, 95–103.

    PubMed  CAS  Google Scholar 

  • Jones, S.L., Nee, L.E., Sweet, L. et al. (1989) Decreased DNA repair in familial Alzheimer’s disease. Mutat. Res., 219, 247–255.

    PubMed  CAS  Google Scholar 

  • Kalaria, R.N. and Harik, S.I. (1989) Reduced glucose transporter at the blood-brain barrier and in cerebral cortex in Alzheimer’s disease. J. Neurochem., 53, 1083–1087.

    PubMed  CAS  Google Scholar 

  • Kastrukoff, L., Long, C., Doherty, P.S. et al. (1981) Isolation of virus from brainafter immunosuppression of mice with latent herpes simplex. Nature, 291, 432–433.

    PubMed  CAS  Google Scholar 

  • Kennedy, P.G.E. (1984) Herpes simplex virus and the nervous system. Postgrad. Med. J., 60, 253–259.

    PubMed  CAS  Google Scholar 

  • Kidd, M. (1963) Paired helical filaments in electron microscopy. Nature, 197, 192–193.

    PubMed  CAS  Google Scholar 

  • Kim, Y.S., Lee, M.H. and Wisniewski, H.M. (1986) Aluminum induced reversible change in permeability of the blood-brain barrier to [14C]sucrose. Brain Res., 377, 286–291.

    PubMed  CAS  Google Scholar 

  • Kinsella, T.J., Dobson, P.O., Fornace, A.J. et al. (1987a) Alzheimer’s disease fibroblasts have normal repair of methylmethane sulfonate-induced DNA damage determined by the alkaline elution technique. Neurology, 37(Suppl. 1), 166.

    Google Scholar 

  • Kinsella, T.J., Dobson, P.P., Fornace, A.J. et al. (1987b) Alzeheimer’s disease fibroblasts have normal repair of N-methyl-N ′-nitro-N-nitrosoguanidineinduced DNA damage determined by the alkaline elution technique. Biochem. Biophys. Res. Commun., 149, 355–361.

    PubMed  CAS  Google Scholar 

  • Klatzo, I., Wisniewski, H. and Streicher, E. (1965) Experimental production of neurofibrillary degeneration. J. Neuropathol. Exp. Neurol., 24, 187–199.

    PubMed  CAS  Google Scholar 

  • Kopeloff, L.M., Barrera, S.E. and Kopeloff, N. (1942) Recurrent convulsive seizures in animals produced by immunologie and chemical means. Am. J. Psychiatry, 98, 881–902.

    CAS  Google Scholar 

  • Kosik, K.S., McCluskey, A.H., Walsh, F.X. et al. (1985) Axonal transport of cytoskeletal proteins in aluminum toxicity. Neurochem. Pathol., 3, 99–107.

    PubMed  CAS  Google Scholar 

  • Kowall, N.W., Pendlebury, W.W., Kessler, J.B. et al. (1989) Aluminum-induced neurofibrillary degeneration affects a subset of neurons in rabbit cerebral cortex, basal fore brain and upper brainstem. Neuroscience, 29, 237–329.

    Google Scholar 

  • Landsberg, J.P., McDonald, B. and Watt, F. (1992) Absence of aluminium in neuritic plaque cores in Alzheimer’s disease. Nature, 360, 65–68.

    PubMed  CAS  Google Scholar 

  • Langui, D., Anderton, B.H., Brion, J.P. et al. (1988) Effects of aluminium chloride on cultured cells from rat brain hemispheres. Brain Res., 438, 67–76.

    PubMed  CAS  Google Scholar 

  • Lavin, M.F., Bates, P., le Poidevin, P. et al. (1989) Normal inhibition of DNA synthesis following γ-irradiation of radiosensitive cell lines from patients with Down’s syndrome and Alzheimer’s disease. Mutat. Res., 218, 41–47.

    PubMed  CAS  Google Scholar 

  • Li, J.C. and Kaminskas, E. (1985) Dificient repair of DNA lesions in Alzheimer’s disease fibroblasts. Biochem. Biophys. Res. Commun., 129, 733–738.

    PubMed  CAS  Google Scholar 

  • Libikova, H., Pogady, J., Weidermann, V. et al. (1975) Search for hepetic antibodies in the cerebrospinal fluid in senile dementia and mental retardation. Acta Virol., 19, 493–495.

    PubMed  CAS  Google Scholar 

  • Lukiw, W.J., Krishnan, L., Wong, T.P.A. et al. (1991) Nuclear compartmentalization of aluminum in Alzheimer’s disease. Neurobiol. Ageing, 13, 115–121.

    Google Scholar 

  • Macdonald, T.L. and Martin, R.B. (1988) Aluminum ion in biological systems. Trends Biochem. Sci., 13, 15–19.

    PubMed  CAS  Google Scholar 

  • Macdonald, T.L., Humphreys, W.G and Martin, R.B. (1987) Promotion of tubulin assembly by aluminum ion in vitro. Science, 236, 183–186.

    PubMed  CAS  Google Scholar 

  • McGregor, S.J., Brock, J.H. and Hallis, D. (1991) The role of transferrin and citrate in cellular uptake of aluminium. Biol. Metals, 4, 173–175.

    CAS  Google Scholar 

  • Mann, D.M.A., Tinkler, A.M. and Yates, P.O. (1983) Neurological disease and Herpes simplex virus. Acta Neuropathol. (Berl), 60, 24–28.

    CAS  Google Scholar 

  • Martyn, C.N., Osmond, C., Edwardson, J.A. et al. (1989) Geographical relation between Alzheimer’s disease and aluminium in drinking water. Lancet, 1, 60–63.

    Google Scholar 

  • Mesco, E.R., Kachen, C. and Timaras, P.S. (1991) Effects of aluminum on the proteins in human neuroblastoma cells. Mol. Chem. Neuropathol., 14, 199–211.

    PubMed  CAS  Google Scholar 

  • Michel, Ph., Commenges, D., Dartigues, J.F. et al. (1990) Study of the relationship between Alzheimer’s disease and aluminium in drinking water. Neurobiol. Ageing, 11, 264.

    Google Scholar 

  • Middleton, P.J., Petric, M., Kozak, M. et al. (1980) Herpes-simplex viral genome and senile and presenile dementias of Alzheimer’s and Pick. Lancet, 1, 1038.

    PubMed  CAS  Google Scholar 

  • Miller, C.A. and Levine, E.M. (1974) Effects of aluminum salts on cultured neuroblastoma cells. J. Neurosci., 22, 751–758.

    CAS  Google Scholar 

  • Morris, C.M., Candy, J.M., Court, J.A. et al. (1987) The role of transferrin in the uptake of aluminium and manganese by the IMR-32 neuroblastoma cell line. Biochem. Soc. Trans., 15, 498.

    CAS  Google Scholar 

  • Mortimer, J.A., French, L.R., Hutton, J.T. et al. (1985) Head injury as a risk factory for Alzheimer’s disease. Neurology, 35, 264–267.

    PubMed  CAS  Google Scholar 

  • Mortimer, J.A., van Duijn, C.M. and Chandra, V. et al. (1991) Head trauma as a risk factor for Alzheimer’s disease: a collaborative re-analysis of case-control studies. Int. J. Epidemiol., 20, S28.

    PubMed  Google Scholar 

  • Mozar, H.N., Bal, D.G. and Howard, J.T. (1987) Perspectives on the etiology of Alzheimer’s disease. J.. Am. Med. Assoc., 257, 1503–1507.

    CAS  Google Scholar 

  • Muma, N.A., Troncoso, J.C., Hoffman, P.N. et al. (1988) Aluminum neurotoxicity: altered expression of cytoskeletal genes. Mol. Brain Res., 3, 115–122.

    CAS  Google Scholar 

  • Munoz-Garcia, D., Pendlebury, W.W., Kessler, J.B. et al. (1986) An immunoctyochemical comparison of cytoskeletal preteins in aluminum-induced and Alzheimer-type neurofibrillary tangles. Acta Neuropathol., 70, 243–248.

    PubMed  CAS  Google Scholar 

  • Nicholls, D.M., Speares, G.M., Miller, A.C.M. et al. (1991) Brain protein synthesis in rabbits following low level aluminium exposure. Int. J. Biochem., 23, 737–741.

    PubMed  CAS  Google Scholar 

  • Nishimura, T., Takeda, M., Tada, K. and Hariguchi, S. (1986) Mechanism of experimental neurofibrillary change formation induced by aluminum and spindle inhbitors. Gerontology, 32, 119.

    Google Scholar 

  • Nixon, R.A., Clarke, J.F., Logvinenko, K.B. et al. (1990) Aluminum inhibits calpainmediated proteolysis and induced human neurofilament proteins to form protease-resistant high molecular weight complexes. J. Neurochem., 55, 1909–1950.

    Google Scholar 

  • Okamoto, K., Hirai, S., Iizuki, T., et al. (1991) Rexamination of granulovascular degeneration. Acta Neuropathol., 82, 340–345.

    PubMed  CAS  Google Scholar 

  • Oteiza, P.I., Golub, M.S., Gershwin, M.E. et al. (1989) The influence of high dietary aluminum on brain microtubule polymerization in mice. Toxicol. Lett., 47, 279–285.

    PubMed  CAS  Google Scholar 

  • Parhad, I.M., Krekoski, C.A., Mathew, A. et al. (1989) Neuronal gene expression in aluminum myelopathy. Cell. Mol. Neurobiol, 9, 123–138.

    PubMed  CAS  Google Scholar 

  • Pendlebury, W.W., Beal, M.F., Kowall, N.W. et al. (1988) Neuropathologic, neurochemical and immunocytochemical characteristics of aluminum-induced neurofilamentous degeneration. NeuroToxicology, 3, 503–510.

    Google Scholar 

  • Perl, D.P. and Brody, A.R. (1980) Alzheimer’s disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons. Science, 208, 297–298.

    PubMed  CAS  Google Scholar 

  • Perl, D.P. and Good, P.F. (1988) Laser microprobe mass (LAMMA) analysis evidence that aluminum (A1) selectively accumulates in the neurofibrillary tangle (NFT). J. Neuropathol. Exp. Neurol., 47, 318.

    Google Scholar 

  • Petersen, O.H. (1991) The effect of aluminium on calcium homeostasis in pancreatic acinar cells, in Alzheimer’s and the Environment, (ed. Lord Walton of Detchant), RSM Services, Round Table Series, No. 26, pp. 95-105.

    Google Scholar 

  • Pogo, B.G.T., Casals, J. and Elizan, T.S. (1987) A study of viral genomes and antigens in brains of patients with Alzheimer’s disease. Brain, 110, 907–915.

    PubMed  Google Scholar 

  • Pullen, R.G.L., Candy, J.M., Morris, C.M. et al. (1990) 67Gallium as a potential marker for aluminium transport in rat brain: implications for Alzheimer’s disease. J.. Neurochem., 55, 251–259.

    PubMed  CAS  Google Scholar 

  • Renvoize, E.B., Awad, I.O. and Hambling, M.H. (1987) A sero-epidemiological study of conventional infectious agents in Alzheimer’s disease. Age Ageing, 16, 311–314.

    PubMed  CAS  Google Scholar 

  • Rifat, S.L., Eastwood, M.R., McLachlan, D.R. et al. (1990) Effect of exposure of miners to aluminium powder. Lancet, 2, 1161–1165.

    Google Scholar 

  • Robbins, J.H., Otsuka, F., Tarone, R.E. et al. (1983) Radiosensitivity in Alzheimer’s disease and Parkinson’s disease. Lancet, 1, 468–469.

    PubMed  CAS  Google Scholar 

  • Robbins, J.H., Otsuka, F., Tarone, R.E. et al. (1985) Parkinson’s disease and Alzheimer’s disease: hypersensitivity to X-rays in cultured cell lines. J.. Neurol. Neurosurg. Psychiatry, 48, 916–923.

    PubMed  CAS  Google Scholar 

  • Robbins, J.H., Barrett, S.F., Ganges, M.B. et al. (1987) Alzheimer’s disease fibroblasts have normal rates of unscheduled DNA synthesis induced by methyl-methane sulfonate. Clin. Res., 35, 418A.

    Google Scholar 

  • Roberts, G.W., Allsop, D and Bruton, C.J. (1990) The occult aftermath of boxing. J. Neurol. Neurosurg. Psychiatry, 53, 373–378.

    PubMed  CAS  Google Scholar 

  • Roberts, G.W., Taylor, G.R., Carter, G.I. et al. (1986) Herpes simplex virus: a role in the aetiology of Alzheimer’s disease. J.. Neurol. Neurosurg. Psychiatry, 49, 216.

    PubMed  CAS  Google Scholar 

  • Roberts, G.W., Gentleman, S.M., Lynch, A et al. (1991) BA4 amyloid protein deposition in brain after head trauma. Lancet, 33B, 1422–1423.

    Google Scholar 

  • Robinson, N.R., De Sousa, M.A. and Itzhaki, R.F. (1993) Aluminium and Alzheimer’s disease; electrophoresis of proteins from aluminium-treated human neuroblastoma cells. Biochem. Soc. Trans. 21, 322.

    Google Scholar 

  • Robison, S.H. and Bradley, W.G. (1985) Impaired DNA repair replication in Alzheimer’s disease cells, in Senile Dementia of the Alzheimer’s Type, (eds J.T. Hutton and A.D. Kenny), Alan R. Liss, New York, pp. 205–218.

    Google Scholar 

  • Robison, S.H., Munzer, S., Tandan, R. et al. (1987) Alzheimer’s disease cells exhibit defective repair of alkylating agent-induced DNA damage. Ann. Neurol., 21, 250–258.

    PubMed  CAS  Google Scholar 

  • Roll, M., Banin, E. and Meiri, H. (1989) Differentiated neuroblastoma cells are more susceptible to aluminium toxicity than developing cells. Arch. Toxicol., 63, 231–237.

    PubMed  CAS  Google Scholar 

  • Roskams, A.J. and Connor, J.R. (1990) Aluminium access to the brain: a role for transferrin and its receptor. Proc. Natl. Acad. Sci. USA, 87, 9024–9027.

    PubMed  CAS  Google Scholar 

  • Saldanha, J., Sutton, R.N.P., Gannicliffe, A. et al. (1986) Detection of HSV1 DNA by in situ hybridisation in human brain after immunosuppression. J. Neurol. Neurosurg. Psychiatry, 49, 613–619.

    PubMed  CAS  Google Scholar 

  • Scholtz, C.L., Swash, M., Gray, A. et al. (1987) Neurofibrillary neuronal degeneration in dialysis dementia: a feature of aluminum toxicity. Clin. Neuropathol., 6, 93–97.

    PubMed  CAS  Google Scholar 

  • Schuurmans Stekhoven, J.H.S., Renkawek, K., Otte-Holler, I. et al. (1990) Exogenous aluminum accumulates in the lysosomes of cultured rat cortical neurons. Neurosci. Lett., 119, 71–74.

    PubMed  CAS  Google Scholar 

  • Scudiero, S.A., Tarone, R.E., Polinsky, R.J. et al. (1982) Parkinson’s disease and Alzheimer’s disease fibroblasts are hypersensitive to killing by N-methyl-N ′-nitro-N-nitrosoguanidine. Clin. Res., 30, 857A.

    Google Scholar 

  • Scudiero, D.A., Polinsky, R.J., Brumback, R.A. et al. (1986) Alzheimer’s disease fibroblasts are hypersensitive to the lethal effects of a DNA-damaging chemical. Mutat. Res., 159, 125–131.

    PubMed  CAS  Google Scholar 

  • Selkoe, D.J., Liem, R.K.H., Yen, S.H. et al. (1979) Biochemical and immunological characterization of neurofilaments in experimental neurofibrillary degeneration induced by aluminum. Brain Res., 163, 235–252.

    PubMed  CAS  Google Scholar 

  • Sequiera, L.W., Carrasco, L.H., Curry, A. et al. (1979) Detection of herpes-simplex viral genome in brain tissue. Lancet, 2, 609–612.

    PubMed  CAS  Google Scholar 

  • Shea, T.B. and Fischer, I. (1991) Aluminum-induced cytoskeletal abnormalities in PC 12 cells. Neurosci. Res. Commun., 9, 21–27.

    CAS  Google Scholar 

  • Shea, T.B., Clarke, J.F., Wheelock, T.R. et al. (1989) Aluminum salts induce the accumulation of neurofilaments in perikarya of NB2a/dl neuroblastoma. Brain Res., 492, 53–64.

    PubMed  CAS  Google Scholar 

  • Shi, B. and Haug, A. (1990) Aluminum uptake by neuroblastoma cells. J. Neurochem., 55, 551–558.

    PubMed  CAS  Google Scholar 

  • Shippey, C.A., Tobi, S.E., Moquet, J.E. et al. (1992) Chromosome studies in Alzheimer patients: distribution of dicentric breakpoints in lymphocytes irradiated in vitro. Int. J. Radiat. Biol., 62, 377.

    Google Scholar 

  • Simpson, J., Yates, C.M., Whyler, D.K. et al. (1985) Biochemical studies on rabbits with aluminum induced neurofilament accumulation. Neurochem. Res., 10, 229–236.

    PubMed  CAS  Google Scholar 

  • Singer, H.S., Searles, C.D., Hahn, I.H. et al. (1990) The effect of aluminum on markers for synaptic neurotransmission, cyclic AMP, and neurofilaments in a neuroblastoma x glioma hybridoma (NG108-15). Brain Res., 528, 73–79.

    PubMed  CAS  Google Scholar 

  • Smith, T.A.D., Neary, D and Itzhaki, R.F. (1987) DNA repair in lymphocytes from young and old individuals and from patients with Alzheimer’s disease. Mutat. Res., 184, 107–112.

    PubMed  CAS  Google Scholar 

  • Smith, T.A.D. and Itzhaki, R.F. (1989) Radiosensitivity of lymphocytes from patients with Alzheimer’s disease. Mutat. Res., 217, 11–17.

    PubMed  CAS  Google Scholar 

  • Smith, T.A.D. and Itzhaki R.F. (1991) Repair of DNA single-strand breaks in lymphocytes from Alzheimer’s disease patients. Gerontology, 37, 193–198.

    PubMed  CAS  Google Scholar 

  • Stern, A.J., Perl, D.P., Munoz-Garcia, D. et al. (1986) Investigation of silicon and aluminum content in isolated senile plaque cores by laser microprobe mass analysis (LAMMA). J. Neuropathol. Exp. Neurol., 45, 361.

    Google Scholar 

  • Strong, M.J. and Garruto, R.M. (1991) Neuron-specific thresholds of aluminum toxicity in vitro. Lab. Invest., 65, 243–249.

    PubMed  CAS  Google Scholar 

  • Sulkava, R., Erkinjuntti, T. and Pali, J. (1985) Head injuries in Alzheimer’s disease and vascular dementia. Neurology, 35, 1084.

    Google Scholar 

  • Takeda, M., Tatebayashi, Y., Tanimukai, S. et al. (1991) Immunohistochemical study of microtubule-associated protein 2 and ubiquitin in chronically aluminium-intoxicated rabbit brain. Acta Neuropathol., 82, 346–352.

    PubMed  CAS  Google Scholar 

  • Takeshita, T., Ariizumi-Shibasawa, C., Shimizu, K. et al. (1992) The effect of aging on cell-cycle kinetics and X-ray-induced chromosome aberrations in cultured lymphocytes from patients with Down syndrome. Mutat. Res., 275, 21–29.

    PubMed  CAS  Google Scholar 

  • Tarone, R.W., Scudiero, D.A., Brumback, R.A. et al. (1983) Statistical analysis of the hypersensitivity of N-methyl-N’-nitro-N’nitrosoguanidine (MNNG) in muscular dystrophy (MD) or neuro-degeneration. J. Cell. Biochem., Suppl. 7B, 1054.

    Google Scholar 

  • Taylor, G.R., Crow, T.J., Markakis, D.A. et al. (1984) Herpes simplex virus and Alzheimer’s disease: a search for virus DNA by spot hybridisation. J.. Neurol. Neurosurg. Psychiatry, 47, 1061–1065.

    PubMed  CAS  Google Scholar 

  • Terry, R.D. and Pena, C. (1965) Experimental production of neurofibrillary degeneration. J.. Neuropathol. Exp. Neurol., 24, 200–210.

    PubMed  CAS  Google Scholar 

  • Tobi, S.E. and Itzhaki, R.F. (1993) DNA double-strand breaks in irradiated Alzheimer’s disease and normal lymphocytes measured by pulse field gel electrophoresis. Int. J. Radiat. Biol. 63, 617–622.

    PubMed  CAS  Google Scholar 

  • Tobi, S.E., Neary, D. and Itzhaki, R.F. (1993) Alkylation damage and repair in Alzheimer’s disease and lymphocytes. Gerontology (in press).

    Google Scholar 

  • Tobi, S.E., Moquet, J.E., Edwards, A.A. et al. (1990) Chromosomal radiosensitivity of lymphocytes from Alzheimer’s disease patients. J.. Med. Genet., 27, 437–440.

    PubMed  CAS  Google Scholar 

  • Troncoso, J.C., Price, D.L., Griffin, J.W. et al. (1982) Neurofibrillary axonal pathology in aluminum intoxication. Ann. Neurol., 12, 278–283.

    PubMed  CAS  Google Scholar 

  • Troncoso, J.C., Hoffman, P.N., Griffin, J.W. et al. (1985) Aluminum intoxication: a disorder of neurofilament transport in motor neurons. Brain Res., 342, 172–175.

    PubMed  CAS  Google Scholar 

  • Troncoso, J.C., Sternberger, N.H., Sternberger, L.A. et al. (1986) Immunocytochemical studies of neurofilament antigens in the neurofibrillary pathology induced by aluminum. Brain Res., 364, 295–300.

    PubMed  CAS  Google Scholar 

  • Uemura, E. (1984) Intranuclear aluminum accumulation in chronic animals with experimental neurofibrillary changes. Exp. Neurol., 85, 10–18.

    PubMed  CAS  Google Scholar 

  • van Welsum, R.A., van der Voet, G.B., Marani, E. et al. (1989) Aluminum affects interconnections between aggregates of cultured hippocampal neurons. J.. Neurol. Sci., 93, 157–166.

    PubMed  Google Scholar 

  • Wen, G.Y. and Wisniewski, H.M., (1985) Histochemical localization of aluminum in the rabbit CNS. Acta Neuropathol., 68, 175–184.

    PubMed  CAS  Google Scholar 

  • Wisniewski, H.M. and Kozlowski, P.D. (1982) Evidence for blood-brain barrier changes in senile dementia of the Alzheimer type (SDAT). Ann. NY Acad. Sci., 396, 119–129.

    PubMed  CAS  Google Scholar 

  • Wisniewski, H.M., Sturman, J.A. and Shek, J.W. (1980) Aluminium chloride induced neurofibrillary changes in the developing rabbit; a chronic animal model. Ann. Neurol., 8, 479–490.

    PubMed  CAS  Google Scholar 

  • Yates, C.M., Gordon, A and Wilson, J. (1976) Neurofibrillary degeneration induced in the rabbit by aluminium chloride: aluminium neurofibrillary tangles. Neuropathol. Appl. Neurobiol., 2, 131–144.

    Google Scholar 

  • Yates, C.M., Simpson, J., Russell, D. et al. (1980) Cholinergic enzymes in neurofibrillary degeneration produced by aluminium. Brain Res., 197, 269–274.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Itzhaki, R.F. (1994). The aetiology of Alzheimer’s disease. In: Owen, F., Itzhaki, R. (eds) Molecular and Cell Biology of Neuropsychiatric Diseases. Molecular and Cell Biology of Human Diseases Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0709-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0709-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4305-2

  • Online ISBN: 978-94-011-0709-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics