Skip to main content

Aluminium alloys: physical metallurgy, processing and properties

  • Chapter
High Performance Materials in Aerospace

Abstract

The development of the aerospace industry during the twentieth century has relied heavily on the availability of aluminium and its alloys. Since their introduction into Zeppelins during World War I and both civil and military aircraft since World War II, aluminium alloys have remained the dominant materials for the construction of subsonic airframe structures. Currently, wrought aluminium alloys account for greater than 70% of the materials usage for a modern transport airframe on account of their low density, good mechanical properties and corrosion resistance at ambient temperatures. Their availability in many product forms (Figure 2.1) together with ease of fabrication ensures that aluminium alloys continue to be selected for structurally efficient airframes [1]. Similar requirements have led to extensive use of aluminium alloys for structural applications in satellites and space launch vehicles since the late 1950s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peel, C. J. (1986) Mat. Sci. Tech. ,2, 1169.

    Article  Google Scholar 

  2. Jonas, J. J., Sellars, C. M. and McG. Tegart, W. G. (1969) Met. Rev. ,15, 1.

    Article  Google Scholar 

  3. McElroy, R. J. and Skopiak, Z. C. (1972) Int. Met. Rev. ,17, 175.

    Article  Google Scholar 

  4. Humphreys, F. J. (1977) Acta Metall. ,25, 1323.

    Article  Google Scholar 

  5. Stewart, A. T. and Martin, J. W. (1975) Acta Metall. ,23, 1.

    Article  Google Scholar 

  6. Chadwick, G. A. (1986) Met. and Mater., 2 ,693.

    Google Scholar 

  7. Edington, J. W., Melton, K. N. and Cutler, C. P. (1976) Prog. Mat. Sci. ,21, 61.

    Article  Google Scholar 

  8. Lorimer, G. W. and Nicholson, R. B. (1966) Acta Metall. ,14, 1009.

    Article  Google Scholar 

  9. Pashley, D. W., Jacobs, M. H. and Veitz, J. T. (1967) Phil. Mag. ,16, 51.

    Article  Google Scholar 

  10. Gleiter, H. and Hornboger, E. (1967) Mater. Sci. Eng., 2 ,285.

    Google Scholar 

  11. Decker, R. F. (1973) Met. Trans ,4, 2495.

    Article  Google Scholar 

  12. Fleischer, R. L. (1963) Acta Metall. ,11, 203.

    Article  Google Scholar 

  13. Thompson, D. S. (1975) Met. Trans. ,6A, 671.

    Google Scholar 

  14. Holroyd, N. J. H. (1989) Proc. Environment-Induced Cracking of Metals ,311, National Association of Corrosion Engineers, Houston, Texas.

    Google Scholar 

  15. Vogel, W., Wilhelm, M. and Gerold, V. (1982) Acta Metall. ,30, 21.

    Article  Google Scholar 

  16. Lorimer, G. W. (1978) in Precipitation processes in solids ,87, Met. Soc. American Institute of Metallurgical Engineers, New York.

    Google Scholar 

  17. Speidel, M. O. (1975) Met. Trans. ,6A, 631.

    Google Scholar 

  18. Scamens, G. M. (1978) J. Mater. Sci. ,13, 27.

    Article  Google Scholar 

  19. Doig, P., Flewitt, P. E. J. and Edington, J. W. (1975) Corrosion ,10, 347.

    Google Scholar 

  20. Flower, H. M. and Gregson, P. J. (1987) Mat. Sci. Tech. ,3, 81.

    Article  Google Scholar 

  21. Gilman, P. (1990) Met. Mater. ,505.

    Google Scholar 

  22. Gardiner, R. W. and McConnell, M. C. (1987) Met. Mater. ,255.

    Google Scholar 

  23. Polmear, I. J. (1989) Light Alloys ,Edward Arnold, London.

    Google Scholar 

  24. Mondolfo, L. F. (1970) Aluminium Alloys: Structure and Properties ,Butter-worths, London.

    Google Scholar 

  25. Vasudevan, A. K. and Doherty, R. D. (eds) (1989) Aluminium Alloys: Contemporary Research and Applications ,Academic Press, London.

    Google Scholar 

  26. Starke, E. A. and Sanders, T. H. (eds) (1986) Aluminium Alloys: Their Physical and Mechanical Properties ,EMAS, Warley, UK.

    Google Scholar 

  27. Aluminium Lithium Alloys: Proceedings of International Conferences 1st

    Google Scholar 

  28. AIME, 1981; 2nd: AIME, 1983; 3rd: Inst. Metals, UK, 1985; 4th: J. Physique, France, 1987.

    Google Scholar 

  29. Fine, M. E. and Starke, E. A. (eds) (1986) Rapidly Solidified Powder Aluminium Alloys ,ASTM.

    Google Scholar 

  30. New Light Alloys ,Lecture Series No. 174, Advisory Group for Aerospace Research and Development, NATO (1991).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gregson, P.J. (1995). Aluminium alloys: physical metallurgy, processing and properties. In: Flower, H.M. (eds) High Performance Materials in Aerospace. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0685-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0685-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4296-3

  • Online ISBN: 978-94-011-0685-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics