Skip to main content

Applications in gas and vapour phase separations

  • Chapter
Industrial Membrane Separation Technology
  • 618 Accesses

Abstract

In principle various materials may be used as membranes to separate one or more constituents of a gas stream from the remaining gas. However, in general membrane materials may be divided into two broad classes, namely polymeric and inorganic membranes. Polymer membranes have so far been those which have been widely adopted for gas separation, but with increasing process demands for separating gas mixtures at temperatures higher than the thermal limitations of many polymeric materials, the adoption of inorganic membranes is likely to increase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A :

membrane area, m2

b :

adsorption equilibrium constant, 1 kPa−1

C :

concentration of penetrant gas, m3 (STP)m−3

D :

diffusion coefficient, m2 s−1

E :

activation energy, kJ kmol−1

G :

mass flowrate, kg s−1

J :

volumetric flux, kmol m−2s−1

k :

rate constant

L :

flowrate, m3s−1

p :

pressure, kPa

P :

permeability, kmol m/(m2 s kPa)

P :

mean permeability, kmol.m/m2s kPa−1

r :

pressure ratio across membrane, dimensionless

r 1 :

p m/p u

r 2 :

p p/p m

R g :

gas constant, kJ kmol−1K−1

S :

solubility, m3(STP) kPa−1 m−3

t :

time, s

T :

temperature, K

x :

mole fraction on retentate side, dimensionless

X :

mole fraction in feed, dimensionless

y :

mole fraction on permeate side, dimensionless

α:

ideal separation factor, dimensionless

ε:

porosity, dimensionless

Ñ„:

stage cut

λ:

mean free path, m

f:

feed

i:

number of the components

p:

permeate

s:

purge gas

r:

retentate

t:

total value

References

  1. Mitchell, J.H., J. Ray, Institution, 2, 101, 307 (1834).

    Google Scholar 

  2. Graham T., Phil. Mag., 32, 401 (1866).

    Google Scholar 

  3. Weller S. and Steiner W.A., J. Appl. Phys., 21, 279 (1950).

    Article  CAS  Google Scholar 

  4. Weller S. and Steiner W.A., Chem. Eng. Progr., 46, 585 (1950).

    CAS  Google Scholar 

  5. Jia M.D., Chen B., Noble R.D. and Falconer J.L. J. Membrane Sci., 90, 1 (1994).

    Article  CAS  Google Scholar 

  6. te Hennepe H.J.C., Bosweryer W.B.F., Bargeman D., Mulder M.H.V. and Smalders C.A., J. Membrane Sci., 89, 185 (1994).

    Article  Google Scholar 

  7. Hwang S.T. and Kammermeyer K., Membranes in Separation: Techniques of Chemistry, Wiley Interscience, N.Y. (1975), p. 65.

    Google Scholar 

  8. Norton F.J., Trans. 8th Vacuum Symposium and 2nd Int. Congress, Pergamon Press, Oxford (1962), p. 8.

    Google Scholar 

  9. Buxbaum R.E and Marker T.L., J. Membrane Sci., 35, 29 (1993).

    Article  Google Scholar 

  10. Edlund D., Friesen D., Johnson B. and Pledger W., Gas Separation Purification, 8, 131 (1994).

    Article  CAS  Google Scholar 

  11. Fost D., Farr J.P.G. and Harris J.R., J. Less Common Metals, 39, 293 (1975).

    Article  Google Scholar 

  12. Uemiya S., Sato N., Ando H., Kule Y., Matsuda T. and Kikuchi E., J. Membrane Sci., 36, 303 (1991).

    Article  Google Scholar 

  13. Govind R. and Atnoor D., Ind. Eng. Chem. Res., 30, 591 (1991).

    Article  CAS  Google Scholar 

  14. Gobina E., Hughes R., Monaghan D. and Arnell R.D., Dev. Chem. Eng. Min. Process, 2, 105 (1994).

    Article  Google Scholar 

  15. Gobina E. and Hughes R., J. Membrane Sci., 90, 11 (1994).

    Article  CAS  Google Scholar 

  16. Barrer R.M., J. Phys. Chem., 61, 178 (1957).

    Article  CAS  Google Scholar 

  17. Stern S.A., Industrial Process Design with Membranes, Lacey R.E. and Loeb S. (eds), Wiley Interscience, N.Y. (1972), Chapter XIII.

    Google Scholar 

  18. Barrer R.M., Barrie J.A. and Salter J., J. Polymer Sci., 27, 177 (1958).

    Article  CAS  Google Scholar 

  19. Chen A.H., Koros W.J. and Paul D.R., J. Membrane Sci., 3, 17 (1978).

    Google Scholar 

  20. Lahiere R.J., Hellums M.W., Wijmans J.G. and Kaschemekat J., Ind. Eng. Chem. Res., 32, 2236 (1993).

    Article  CAS  Google Scholar 

  21. Naylor R.W. and Backer P.O., AIChE J., 1, 95 (1955).

    Article  CAS  Google Scholar 

  22. Oishi J., Matsumura Y. and Ike C., J. At Energy. Soc. Japan, 3, 923 (1961).

    Article  Google Scholar 

  23. Walawender W.P. and Stern S.A., Separation Sci., 7, 553 (1972).

    Article  CAS  Google Scholar 

  24. Blaisdell C.T. and Kammermeyer K., Chem. Eng. Sci., 28, 1249 (1973).

    Article  CAS  Google Scholar 

  25. Shindo Y., Itoh N. and Haraya K., Separation Sci. Technol., 23, 1183 (1988).

    Article  CAS  Google Scholar 

  26. Ohma M., Heki H. Ozaka O. and Miyauchi T., J. Nuclear Sci. Technol. Japan, 15, 376 (1978).

    Article  Google Scholar 

  27. Pan C.Y. and Hapgood H.W., Can. J. Chem. Eng., 56, 197 (1978).

    Article  CAS  Google Scholar 

  28. Pfefferile W.C., U.S. Patent 3,144,313 (1964).

    Google Scholar 

  29. Hwang S.T. and Thorman J.M., AIChE J., 26, 558 (1980).

    Article  CAS  Google Scholar 

  30. Hwang S.T. and Thorman J.M., Synthetic Membranes II, Symp. Ser. No. 154, Am. Chem. Soc. (1981), pp. 258–279.

    Google Scholar 

  31. Hwang S.T. and Thorman J.M., Separation Sci. Technol., 15, 1069 (1980).

    Article  CAS  Google Scholar 

  32. Sirkar K.K., Separation Sci. Technol., 15, 1091 (1980).

    Article  CAS  Google Scholar 

  33. Binning R.C. and James F.E., Petr. Refiner., 39, 214 (1958).

    Google Scholar 

  34. Binning R.C., Lee R.J., Kennings J.F. and Martin E.C., Ind. Eng. Chem., 53, 45 (1961).

    Article  Google Scholar 

  35. Seok D.R., Kang S.G. and Hwang S.T, J. Membrane Sci, 33, 71 (1987).

    Article  Google Scholar 

  36. Lee Y.T., Iwamoto K., Sekimoto H. and Seno M., J. Membrane Sci., 42, 169 (1989).

    Article  CAS  Google Scholar 

  37. Acharya H.R. and Stern S.A., J. Membrane Sci., 37, 205 (1988).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hughes, R. (1996). Applications in gas and vapour phase separations. In: Scott, K., Hughes, R. (eds) Industrial Membrane Separation Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0627-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0627-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4274-1

  • Online ISBN: 978-94-011-0627-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics