Skip to main content

Mass transport and the design of membrane systems

  • Chapter
Industrial Membrane Separation Technology

Abstract

A description of the common equipment commonly available for the application of reverse osmosis (RO), nanofiltration (NF), ultrafiltration (UF) and microfiltration (MF) on an industrial scale has already been given in chapter 3 together with a description of membrane materials and the popular modes of operation. Gas separation and pervaporation (PV) applications will be highlighted in chapter 5. This chapter will take a more fundamental look at membrane systems and one of the main aims is to examine the link between mass transport and performance. The other is to develop mass transport equations and relate them to process development and design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Franken A.C.M. and Fane A.G. (1991) Environmental management with membranes, I. Chem. E. Environment. Protect. Bull., 14, 20–26.

    Google Scholar 

  2. Field R.W. (1990) Introducing the concept of film heat transfer coefficients, Chem. Eng. Educ., 24, 132–135.

    CAS  Google Scholar 

  3. Mulder M. (1992), Basic Principles of Membrane Technology, Kluwer Academic, Dordrecht, The Netherlands, Section V.6.

    Google Scholar 

  4. Wu D., Howell J.A., Field R.W. and Yang M. (1995) A simulation of a novel batch membrane concentration process for yeast suspensions using an artificial neural network, in Proceedings of Euromembrane ’95 Bowen W.R., Field R.W and Howell J.A. (eds) CCE University of Bath, Bath, Vol. 2, pp. 91–94.

    Google Scholar 

  5. Aimar P. (1993) Separations by membranes, in Membranes in Bioprocessing, Howell J.A., Sanchez V. and Field R.W. (eds), Blackie Academic, London, pp. 113–140.

    Chapter  Google Scholar 

  6. Field R.W. (1993) Transport processes in membrane systems, in Membranes in Bioprocessing, Howell J.A., Sanchez V. and Field R.W. (eds), Blackie Academic, London, pp. 55–112.

    Chapter  Google Scholar 

  7. Rautenbach R. and Albrecht R.(1989) Membrane Processes, Wiley, Chichester, chapter 8.

    Google Scholar 

  8. Gekas V. and Hallström B. (1987) Mass transfer in the membrane concentration polarisation layer under turbulent cross-flow, Part I, J. Membrane Sei., 30(2), 153–170.

    Article  CAS  Google Scholar 

  9. Blatt W.F., Dravid A., Mickaels A.S. and Nelson L. (1970) Solute polarisation and cake formation in membrane ultrafiltration: causes, consequences and control techniques, in Membrane Science and Technology, Flinn J.E. (ed.), Plenum Press, New York, pp. 47–97.

    Chapter  Google Scholar 

  10. Jonsson G. (1984) Boundary layer phenomena during ultrafiltration of dextran and whey proteins solutions, Desalination, 51, 61–77.

    Article  CAS  Google Scholar 

  11. Aimer P. and Sanchez V. (1986) A novel approach to transfer limiting phenomena during ultrafiltration of macromolecules, Ind. Eng. Chem. Fundamentals, 25, 789–798.

    Article  Google Scholar 

  12. Aimar P. and Field R.W. (1992) Limiting flux in membrane separations: a model based on the viscosity dependency of the mass transfer coefficient, Chem. Eng. Sci., 47, 579–586.

    Article  CAS  Google Scholar 

  13. Field R.W. and Aimar P. (1993) Limiting fluxes in membrane separations: comparison of various theoretical relationships, J. Membrane Sci., 80, 107–115.

    Article  CAS  Google Scholar 

  14. Nakao S., Nomura T. and Kimura S. (1979) Characteristics of macromolecular gel layer formed on ultrafiltration tubular membrane, A.I.Ch.E.J., 25, 615.

    Article  CAS  Google Scholar 

  15. Cheryan M. (1986) Ultrafiltration Handbook, Technomics, Lancaster, PA, USA.

    Google Scholar 

  16. Field R.W. (1990) A theoretical viscosity correction factor for heat transfer and friction in pipe flow, Chem. Eng. Sci., 45, 1343–1347.

    Article  CAS  Google Scholar 

  17. Pritchard M., Howell J.A. and Field R.W. (1995) The ultrafiltration of viscous fluids, J. Membrane Sci., 102, 223–235

    Article  CAS  Google Scholar 

  18. Pritchard M. (1990) The influence of rheology upon mass transfer in cross-flow membrane filtration, PhD thesis, University of Bath, UK.

    Google Scholar 

  19. Matsuuma T. (1994) Synthetic Membranes and Membrane Separation Processes, CRC Press Boca Raton, Florida, USA.

    Google Scholar 

  20. Neel J., Aptel P. and Clement R. (1985) Basic aspects of pervaporation, Desalination, 53, 297–326.

    Article  CAS  Google Scholar 

  21. Strathmann H. and McDonogh R.M. (1993) The use of pervaporation in Biotechnology, in Membranes in Bioprocessing, Howell J.A., Sanchez V. and Field R.W. (eds), Blackie Academic, London, pp. 76–82, 293–328.

    Google Scholar 

  22. Field R, Hang Song and Arnot T. (1994) The influence of surfactant on water flux through microfiltration membranes, J. Membrane Sci., 86, 291–304.

    Article  CAS  Google Scholar 

  23. Howell J.A. (1992) Fouling and process design, in Membrane Preparation Fouling Emerging Processes, Aimar P. and Aptel P. (eds), Recents Progress en genie des procedes, No 22, Vol 6, 195–207.

    Google Scholar 

  24. Howell J.A. (1993) in Membranes in Bioprocessing Theory and Applications (eds), Howell J.A., Field R.W. and Sanchez V., Elsevier.

    Chapter  Google Scholar 

  25. Aimer P., Baklouti S. and Sanchez V. (1986) Membrane-solute interactions: influence on pure solvent transfer during ultrafiltration, J. Membrane Sci., 29, 207–000.

    Article  Google Scholar 

  26. Hermia J. (1982) Constant pressure blocking filtration laws: application to power law non-Newtonian fluids, Trans. I. Chem. E., 60, 183–000.

    CAS  Google Scholar 

  27. Arnot T.C., Field R.W. and Koltuniewicz A. Cross-flow and dead-end microfiltration of oily-water emulsion. Part II: Mechanisms and modelling of flux decline, J. Membrane Sci., submitted.

    Google Scholar 

  28. Koltuniewicz A. (1992) Predicting permeate flux in ultrafiltration on the basis of surface renewal concept, J. Membrane Sci., 68, 107–118.

    Article  CAS  Google Scholar 

  29. Aimar P. and Howell J.A. (1989) Effects of concentration boundary layer development on the flux limitations in ultrafiltration, Chem. Eng. Res. Des., 67, 255–261.

    CAS  Google Scholar 

  30. Howell J.A., Field R.W. and Wu D. (1993) Yeast cell microfiltration: Flux enhancement in baffled and pulsatile flow systems, J. Membrane Sci., 80, 59–71.

    Article  CAS  Google Scholar 

  31. Wu D., Howell J.A. and Field R.W. (1993) Pulsatile flow filtration of yeast cell debris: influence of pre-incubation on performance, Biotechnol. Bioeng., 41, 998–1002.

    Article  CAS  Google Scholar 

  32. Field R.W., Wu. D., Howell J.A. and Gupta B.B. (1995) Critical flux concept for microfiltration fouling, J. Membrane Sci., 100, 259–272.

    Article  CAS  Google Scholar 

  33. Bacchin P., Aimar P. and Sanchez V. (199x) A model for colloidal fouling of membranes, A.I.Ch.EJ., 41, 368–376.

    Google Scholar 

  34. Benkahla Y.K., Ould-Dris A. and Jaffrin M.Y. (1993) Hydrodynamic anti-fouling mechanism in crossflow microfiltration, Poster presentation at ICO M ’93, Aug 30-Sept 3, Heidelberg, Germany.

    Google Scholar 

  35. Lojkine M.H., Field R.W. and Howell J.A. (1992) Crossflow microfiltration of cell suspensions: a review of models with emphasis on particle size effects, Trans. I. Chem. E., 70(C), 149–164.

    CAS  Google Scholar 

  36. Tarleton E.S. and Wakerman R.J. (1993) Understanding flux decline in crossflow microfiltration: Part 1: Effects of Particle and Pore Size, Trans. I. Chem. E., 71 (A).

    Google Scholar 

  37. Baker R.J., Fane A.G., Fell CJ.D. and Yoo B.H. (1985) Factors affecting flux in crossflow filtration, Desalination, 53, 81–000.

    Article  CAS  Google Scholar 

  38. Ishida H., Yamada Y., Tsuboi M. and Matsumura S. (1993) Kubota submerged membrane activated sludge process—its application into activated sludge process with high concentrations of MLSS presented at ICOM ’93, Aug 30-Sept 3, Heidelberg, Germany.

    Google Scholar 

  39. Bellhouse B.J., Bellhouse F.H., Curl CM. Macmillan T.I, Gunning A.J, Spratt E.H, Macmurray S.B. and Nelems J.M. (1973) A High Efficiency Membrane Oxygenator and Pulsatile Pumping System and its Application to Animal Trials, Trans. Am. Soc. Artificial Organs, 19, 72–79.

    Article  Google Scholar 

  40. Hallstrom B. and Lopez-Leiva M. (1978) Description of a Rotating Ultrafiltration Module, Desalination, 24, 88–101.

    Google Scholar 

  41. Finnigan S.M. and Howell J.A. (1990) The effect of pulsed flow on ultrafiltration fluxes in a baffled tubular membrane system, Desalination, 79, 181–202.

    Article  CAS  Google Scholar 

  42. Gupta B.B, Howell J.A, Wu D. and Field R.W. (1995) A helical baffle for cross-flow microfiltration, J. Membrane Sci., 102, 31–42.

    Article  CAS  Google Scholar 

  43. Bowen W.R. (1993) Electrochemical aspects of microfiltration and ultrafiltration, In Membranes in Bioprocessing, Howell J.A, Sanchez V. and Field R.W. (eds), Blackie Academic, London, pp. 265–291.

    Chapter  Google Scholar 

  44. Nyström M. (1993) Fouling phenomena and flux enhancement, In Membranes in Bioprocessing, Howell J.A, Sanchez V. and Field R.W. (eds), Blackie Academic, London, pp. 252–264.

    Google Scholar 

  45. Porter M.C. (1972) Concentration polarisation with membrane ultrafiltration, Ind. Eng., 234–248.

    Google Scholar 

  46. Bruschke H.E.A. (1991) State-of-art of pervaporation, Proceedings of 5th International Conference on Pervaporation Processes in the Chemical Industry, Bakish R. (ed.), 2–6.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Field, R.W. (1996). Mass transport and the design of membrane systems. In: Scott, K., Hughes, R. (eds) Industrial Membrane Separation Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0627-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0627-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4274-1

  • Online ISBN: 978-94-011-0627-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics