Skip to main content

Chemical destruction using supercritical water

  • Chapter
Chemistry of Waste Minimization

Abstract

Water becomes a supercritical fluid above 374°C and 220 bar. Under these conditions, the hydrogen-bonded structure has largely broken down. It is therefore much less polar and can homogenise relatively large amounts of non-polar organic compounds making them available for chemical reaction. The loss of structure also means that the medium is more like a collection of light mobile molecules and diffusion rates are rapid. For this reason reactions which are diffusion-controlled are much faster. Hence supercritical water can be a very reactive medium for organics. Of particular interest is the use of supercritical water to destroy toxic waste in an environmentally friendly manner. Organic compounds can be rapidly and almost completely converted by molecular oxygen to benign small species: CO2, H20, N2, Cl, SO4 , etc. Conversion of pollutants into more benign species can also take place rapidly by hydrolysis in supercritical water without the presence of oxygen, with for example chlorinated organics becoming hydrocarbons and HCl. An alternative source of oxidation is hydrogen peroxide, which is being used in experiments and may prove economical in processes. This behaviour has given rise to research into commercial processes for the safe destruction of toxic materials and industrial effluent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shaw, R.W., Brill, T.B., Clifford, A.A., Eckert, CA. and Franck, E.U. (1991) Chem. Eng. News, 69, 26.

    CAS  Google Scholar 

  2. Cagniard de la Tour, C. (1882) Ann. Chim., 22, 410.

    Google Scholar 

  3. Haar, L., Gallagher, J.S. and Kell, G.S. (1982) in Proc. 8th Symp. on Thermophysical Properties (ed. J.V. Sengers), A.S.M.E., New York, Vol. II, p. 198.

    Google Scholar 

  4. Kestin, J. and Sengers, J.V. (1986) J. Phys. Chem. Ref. Data, 15, 305.

    Article  CAS  Google Scholar 

  5. Haar, L., Gallagher, J.S. and Kell, G.S. (1984) NBS/NRC Steam Tables, Hemisphere, Washington.

    Google Scholar 

  6. Levelt Sengers, J.M.H., Straub, J., Watanabe, K. and Hill, P.G. (1985) J. Phys. Chem. Ref. Data, 14, 193.

    Article  CAS  Google Scholar 

  7. Sengers, J.V. and Watson, J.T.R. (1986) J. Phys. Chem. Ref. Data, 15, 1291.

    Article  CAS  Google Scholar 

  8. Carroll, J.C. (1992) Ph.D Thesis, University of Leeds, UK.

    Google Scholar 

  9. Franck, E.U. (1987) in High Pressure Chemistry and Biochemistry (eds R. van Eldik and J. Jonas), D. Reidel, New York, p. 93.

    Chapter  Google Scholar 

  10. Marshall, w.L. and Franck, E.U. (1981) J. Phys. Chem. Ref. Data, 10, 295.

    Article  CAS  Google Scholar 

  11. Walther, J.V. (1986) Pure & Appl Chem., 58, 1585.

    Article  CAS  Google Scholar 

  12. Modell, M. (1982) US Patent 4 338 199.

    Google Scholar 

  13. Brunner, G. and Perrut, M. (eds) (1994) Proc. 3rd Int. Symp. on Supercritical Fluids, Institut National Polytechnique de Lorraine, Nancy.

    Google Scholar 

  14. Patat, F. (1945) Monatsh. Chemie, 11, 352.

    Google Scholar 

  15. Townsend, S.H. (1989) Ph.D Thesis, University of Delaware, USA.

    Google Scholar 

  16. Penninger, J.M.L. and Kolmschate, J.M.M. (1988) in Supercritical Fluid Science and Technology; ACS Symposium Series 406 (eds K.P. Johnston and J.M.L. Penninger), American Chemical Society, Washington DC, p. 242.

    Google Scholar 

  17. Lawson, J.R. and Klein, M.T. (1985) Ind. Eng. Chem. Fundam., 24, 203.

    Article  CAS  Google Scholar 

  18. Townsend, S.H., Abraham, M.A., Huppert, G.L., Klein, M.T. and Paspek, S.C. (1988) Ind. Eng. Chem. Res., 27, 143.

    Article  CAS  Google Scholar 

  19. Armellini, F.J. and Tester, J.W. (1990) in Advanced Environmental/Thermal and Life Support Control Systems; SP-831, Society of Automotive Engineers, Warrendale, PA, p. 189.

    Google Scholar 

  20. Brill, T.B., Kieke, M.I. and Schoppelrei (1994) in Proc. 3rd Int. Symp. on Supercritical Fluids (eds G. Brunner and M. Perrut), Institut National Polytechnique de Lorraine, Nancy, Vol. 3, p. 13.

    Google Scholar 

  21. Schilling, W. and Franck, E.U. (1988) Ber. Bunsenges. Phys. Chem., 92, 631.

    CAS  Google Scholar 

  22. Eckl, W., Eisenreich, N., Hirth, Th. and Michelfelder, B. (1994) in Proc. 3rd Int. Symp. on Supercritical Fluids (eds G. Brunner and M. Perrut), Institut National Polytechnique de Lorraine, Nancy, Vol. 3, p. 187.

    Google Scholar 

  23. Helling, R.K. and Tester, J.W. (1988) Environmental Sci. Tech., 22, 1319.

    Article  CAS  Google Scholar 

  24. Tester, J.W., Holgate, H.R., Armellini, Webley, P.A., Killilea, W.R., Hong, G.T. and Barner, H.E. (1993) Emerging Technologies in Hazardous Waste Management III, ACS Symposium Series 518, American Chemical Society, Washington DC, p. 35.

    Book  Google Scholar 

  25. Li, L., Chen, P. and Gloyna, E.F. (1993) in Supercritical Fluid Engineering Science; ACS Symposium Series 514 (eds K. Kiran and J. Brennecke), American Chemical Society, Washington DC, p. 305.

    Google Scholar 

  26. Thornton, T.D. and Savage, P.E. (1992) A.I.Ch.E. J., 38, 321.

    Article  CAS  Google Scholar 

  27. Ding, Z., Aki, S. and Abraham, M.A. (1994) in Proc. 3rd Int. Symp. on Supercritical Fluids (eds G. Brunner and M. Perrut), Institut National Polytechnique de Lorraine, Nancy, Vol. 3, p. 49.

    Google Scholar 

  28. Frisch, M.A. (1992) M.S. Thesis, University of Texas, USA.

    Google Scholar 

  29. Dubois, M.A., Chapus, A. and Dozol, J.F. (1994) in Proc. 3rd Int. Symp. on Supercritical Fluids (eds G. Brunner and M. Perrut), Institut National Polytechnique de Lorraine, Nancy, Vol. 3, p. 37.

    Google Scholar 

  30. Firus, A. and Brunner, G. (1994) in Proc. 3rd Int. Symp. on Supercritical Fluids (eds G. Brunner and M. Perrut), Institut National Polytechnique de Lorraine, Nancy, Vol. 3, p. 195.

    Google Scholar 

  31. Zimmermann, F.J. (1954) US Patent 2 665 249.

    Google Scholar 

  32. Mitton, D.B., Orzalli, J.C. and Latanision, R.M. (1994) in Proc. 3rd Int. Symp. on Supercritical Fluids (eds G. Brunner and M. Perrut), Institut National Polytechnique de Lorraine, Nancy, Vol. 3, p. 43.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Clifford, A.A. (1995). Chemical destruction using supercritical water. In: Clark, J.H. (eds) Chemistry of Waste Minimization. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0623-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0623-8_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4273-4

  • Online ISBN: 978-94-011-0623-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics