Skip to main content

Preservation of metalworking fluids

  • Chapter
Preservation of Surfactant Formulations

Abstract

Metalworking fluids are extensively used in a wide range of machining operations such as turning, milling, tapping, drilling, grinding, broaching, rolling, drawing and stamping.1,2 The primary functions of metalworking fluids during these metalworking operations are to provide cooling effects on the tool and workpiece by dissipating the generated heat and to lubricate the work area by reducing the amount of frictional heat generated. Other secondary functions of metalworking fluids include waste removal, rust protection or corrosion prevention, surface part finish and tool protection during metalworking operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Springborn, R.K. (1967) Cutting and Grinding Fluids: Selection and Application, American Society of Tool Manufacturing Engineering, Dearborn, Michigan.

    Google Scholar 

  2. Nachtman, E.S. and Kalpakjian, S. (1985) Lubricants and Lubrication in Metalworking Operations, Marcel Dekker, New York.

    Google Scholar 

  3. Hill, E.C. (1967) The significance and control of microorganisms in rolling mill oils and emulsions. Metals Mater., 1, 294–297.

    Google Scholar 

  4. Bennett, E.O. (1974) The deterioration of metal cutting fluids. Progr. Indust. Microbiol, 13, 121–149.

    CAS  Google Scholar 

  5. Rossmoore, H.W. (1974) Microbiological causes of cutting fluid deterioration. Soc. Manufact. Eng. Tech. Paper, #MR74-169.

    Google Scholar 

  6. Hill, E.C. (1977) Microbial infection of cutting fluids. Tribology Internat, 10, 49–54.

    Article  Google Scholar 

  7. Almen, R., Mantelli, G., McTeer, P. and Nakamaya, S. (1982) Application of high-performance liquid chromatography to the study of the effect of microorganisms in emulsifiable oils. Lubrication Eng., 38, 99–103.

    CAS  Google Scholar 

  8. Holtzman, G.H.M., Rossmoore, H.W., Holodnik, E. and Weintraub, M. (1982) Interrelationships between biodeterioration, chemical breakdown, and function in soluble oil emulsions. Develop. Indust. Microbiol., 23, 207–216.

    CAS  Google Scholar 

  9. Geiger, R.M., Bennett, E.O. and Gannon, J.E. (1984) Microbial degradation of selected water-soluble lubricants. Develop. Indust. Microbiol., 25, 567–573.

    CAS  Google Scholar 

  10. Tant, C.O. and Bennett, E.O. (1956) The isolation of pathogenic bacteria from used emulsion oils. Appl. Microbiol., 4, 332–338.

    Google Scholar 

  11. Rossmoore, H.W. and Williams, B.W. (1967) Survival of coagulase-positive staphylo-cocci in soluble cutting oils, Health Lab. Sci., 4, 160–165.

    CAS  Google Scholar 

  12. Holdum, R.S. (1976) Microbial spoilage of engineering materials: Part 3-Are infected oil emulsions a health hazard to workers and to the public? Tribology Internat., 9, 271–281.

    Article  Google Scholar 

  13. Bennett, E.O. (1983) Water based cutting fluids and human health. Tribology Internat., 16, 133–136.

    Article  Google Scholar 

  14. Hill, E.C. and Al-Zubaidy, T.S. (1979) Some health aspects of infections in oil and emulsions. Tribology Internat., 12, 161–164.

    Article  Google Scholar 

  15. Hill, E.C. (1983) Microbial aspects of health hazards from water based metalworking working fluids. Tribology Internat., 16, 136–140.

    Article  Google Scholar 

  16. Elsmore, R. (1989) The survival of Legionella pneumophila in dilute metalworking fluids. Tribology Internat., 22, 213–214.

    Article  CAS  Google Scholar 

  17. Rossmoore, H.W. (1993) Biostatic fluids, friendly bacteria, and other myths in metalworking fluids©, Lubrication Eng., 49, 253–260.

    CAS  Google Scholar 

  18. Cookson, J.O. (1971) Machine tool design and use in relation to cutting fluids. Ann. Occupational Hygiene, 14, 181–190.

    Article  CAS  Google Scholar 

  19. Cookson, J.O. (1977) An introduction to cutting fluids. Tribology Internat., 10, 5–11.

    Article  Google Scholar 

  20. Nicholson, R. (1977) Care and handling of cutting fluids. Tribology Internat., 10, 17–20.

    Article  Google Scholar 

  21. Kotvis, P. (1983) A guide to metalworking coolant formulations and performance. Fluid & Lubrication IDEAS, 6, 10–12.

    Google Scholar 

  22. Saunders, A.R. (1990) The metalworking lubricants market: Recent and future trends. Indust. Lubrication Tribology, 3–10.

    Google Scholar 

  23. Sutcliffe, T. and Barber, S.J. (1977) How to select a water-base coolant. Am. Machinist, 138–141.

    Google Scholar 

  24. Hunz, R.P. (1984) Water-based metalworking lubricants©. Lubrication Eng., 40, 549–553.

    CAS  Google Scholar 

  25. Eachus, A.C., Selleck, J.R. and Hunsucker, J.H. (1978) Antimicrobial aspects of metalworking fluids. Chem. Times Trends, 1, 51–55.

    Google Scholar 

  26. Yang, C.C. (1979) The effects of water hardness on the lubricity of a semi-synthetic cutting fluid. Lubrication Eng., 35, 133–136.

    CAS  Google Scholar 

  27. Marinello, R.L. (1976) Industrial synthetic lubricants. Plant Eng., 94–98.

    Google Scholar 

  28. Edwards, J. and Jones, E. (1977) Synthetic cutting fluids-A brief history and state of the art. Tribology Internat., 10, 977.

    Google Scholar 

  29. Bennett, E.O. (1973) The disposal of metal cutting fluids. Lubrication Eng., 29, 300–307.

    Google Scholar 

  30. Kipers, K.C., Shook, F.C. and DeBoer, R. (1983) Evaluation of emulsifier systems for metalworking fluids-Part I. Lubrication Eng., 39, 358–365.

    CAS  Google Scholar 

  31. Kipers, K.C., Shook, F.C. and DeBoer, R. (1983) Evaluation of emulsifier systems for metalworking fluids, Part II. Lubrication Eng., 39, 368–375.

    CAS  Google Scholar 

  32. Mahdi, S.M. and Sköld, R.O. (1990) Surface chemistry aspects on the use of ultra-filtration for the recycling of water-based synthetic metalworking fluids:-Component studies. J. Dispersion Sci. Technol., 11, 1–30.

    Article  CAS  Google Scholar 

  33. Flick, E.W. (1988) International Surfactants, Noyes Publication, Park Ridge, New Jersey, USA.

    Google Scholar 

  34. Childers, J.C., Huang, S. and Romba, M. (1990) Metalworking fluid additives for waste minimization©. Lubrication Eng., 46, 349–358.

    CAS  Google Scholar 

  35. McCutcheon’s (1991) Emulsifiers & Detergents, Volume I, McCutcheon Division, MC Publishing, New Jersey, USA.

    Google Scholar 

  36. Keefer, L. K., Goff, U., Stevens, J. and Bennett, E.O. (1990) Persistence of n-nitrosodiethanolamine contamination in American metal-working fluids. Food Chem. Toxicol, 28, 530–534.

    Google Scholar 

  37. Canter, N.M., Chaloupka, J.J. and Fischesser, G.J. (1988) The use of ethyleneoxide/ propylene oxide (EO/PO) esters as additives in semi-synthetic metalworking fluids. Lubrication Eng., 44, 257–261.

    CAS  Google Scholar 

  38. Sabina, L.R. and Pivnick, H. (1956) Oxidation of soluble oil emulsion and emuslifiers by Pseudomonas oleovorans and Pseudomonas formicans. Appl. Microbiol., 4, 171–175.

    Google Scholar 

  39. Hernandez, P.M., Larsen, I.C., and Peterson, C.R. (1985) The various factors involved in developing a microbial-resistant aqueous cutting fluids©. Lubrication Eng., 41, 425–429.

    CAS  Google Scholar 

  40. Ashjian, H., Giacobbe, T.J., Loveless, F.C, Mackerer, C.R., Novick, N.J. and O’Brian, T.P. (1992) Bioresistant surfactants and cutting oil formulations. PCT Patent Application WO 92/07925, 1-31.

    Google Scholar 

  41. Kane, E.L. and Pfhul, W. (1976) Preservation and preservatives in the aluminum hotrolling and beverage can processing industry. Lubrication Eng., 32, 249–253.

    CAS  Google Scholar 

  42. Bennett, E.O. (1972) The biology of metalworking fluids. Lubrication Eng., 28, 237–247.

    CAS  Google Scholar 

  43. Bennett, E.O. (1974) Water quality and coolant life. Lubrication Eng., 30, 549–555.

    Google Scholar 

  44. Kitze, E.D. and McGray, R.J. (1963) The occurrence of molds in modern industrial cutting fluids. Lubrication Eng., 19, 110–113.

    Google Scholar 

  45. Hill, E.C. (1984) Microorganisms: number, types, significance, detection, in Monitoring and Maintenance of Aqueous Metal-Working Fluids, Chater, K.W.A. and Hill, E.C. (eds), John Wiley, New York, pp. 97–113.

    Google Scholar 

  46. Passman, F.J. (1988) Microbial problems in metalworking fluids. Lubrication Eng., 44, 431–433.

    CAS  Google Scholar 

  47. Foxall-van Aken, S., Brown, J.A., Jr., Young, W., Salmeen, I., McLure, T., Napier, S., Jr. and Oslen, R.H. (1986) Common components of industrial metal-working fluids as sources of carbon for bacterial growth. Appl. Environ. Microbiol., 51, 1165–1169.

    CAS  Google Scholar 

  48. Fleming, C.D. and Baker, R.J. (1960) Controlling the spoilage of water soluble cutting fluids. Lubrication Eng., 16, 414–419.

    Google Scholar 

  49. Carlson, V. and Bennett, E.O. (1960) The relationship between the oil-water-ratio and the effectiveness of inhibitors in oil-soluble emulsions. Lubrication Eng., 16, 572–574.

    Google Scholar 

  50. Feisal, E.V. and Bennett, E.O. (1961) The effect of water hardness on the growth of Pseudomonas aeruginosa in metal cutting fluids. J. Appl. Microbiol., 24, 125–130.

    Article  Google Scholar 

  51. Cook, P.E. and Gaylarde, C.C. (1988) Biofilm formation in aqueous metal working fluids. Internat. Bio deterioration, 24, 265–270.

    Google Scholar 

  52. Sondossi, M., Rossmoore, H.W. and Wireman, J.W. (1985) Factors affecting the regrowth of Pseudomonas aeruginosa following biocide treatment. Lubrication Eng., 41, 366–369.

    CAS  Google Scholar 

  53. Fabian, F.W. and Pivnick, H. (1953) Growth of bacteria in soluble oil emulsion. Appl. Microbial., 1, 199–203.

    CAS  Google Scholar 

  54. Bennett, E.O. and Wheeler, H.O. (1954) Survival of bacteria in cutting oil. Appl. Microbiol., 2, 368–371.

    CAS  Google Scholar 

  55. Tant, C.O. and Bennett, E.O. (1958) The growth of aerobic bacteria in metal-cutting fluids. Appl. Microbiol., 6, 388–391.

    CAS  Google Scholar 

  56. Wort, M.D., Lloyd, G.I. and Schofield, J. (1976) Microbial examination of six industrial soluble oil emulsion samples. Tribology Internat., 9, 35–37.

    Article  Google Scholar 

  57. Mattsby-Baltzer, I., Sandin, M., Ahlström, B., Allenmark, S., Edebo, M., Falsen, E., Pederson, K., Rodin, N., Thompson, R.A. and Edebo, L. (1989) Microbial growth and accumulation in industrial metal-working fluids. Appl. Environ. Microbiol., 55, 2681–2689.

    CAS  Google Scholar 

  58. Rossmoore, H.W., Rossmoore, L.A. and Young, C.E. (1987) Microbial ecology of an automative engine plant, in Biodeterioration Research Vol. 1, Llewellyn, G.C. and O’Rear, C.E. (eds), Plenum, New York, pp. 255–267.

    Chapter  Google Scholar 

  59. Bennett, E.O. (1957) The role of sulfate-reducing bacteria in the deterioration of cutting emulsions. Lubrication Eng., 13, 215–219.

    CAS  Google Scholar 

  60. Guynes, G.J. and Bennett, E.O. (1959) Bacterial deterioration of emulsion oils I. Relationship between aerobes and sulfate-reducing bacteria in deterioration. Appl. Microbiol, 7, 117–121.

    CAS  Google Scholar 

  61. Isenberg, D.L. and Bennett, E.O. (1959) Bacterial deterioration of emulsion oils II. Relationship between aerobes and sulfate-reducing bacteria. Appl Microbiol, 7, 121–125.

    CAS  Google Scholar 

  62. Abu Shaqra, Q.M. and Hill, E.C. (1984) Distribution of sulphate reducing bacteria in oil emulsion and its relationship to aeration and swarf. Tribology Internat., 17, 31–34.

    Article  Google Scholar 

  63. DeMare, J., Rossmoore, H.W. and Smith, T.H.F. (1972) Comparative study of triazine biocides. Develop. Indust. Microbiol., 13, 341–347.

    CAS  Google Scholar 

  64. Rossmoore, H.W. and Holtzman, G.H. (1974) Growth of fungi in cutting fluids. Develop. Indust. Microbiol., 15, 273–280.

    Google Scholar 

  65. Rossmoore, H.W. and Treusch, P.J. (1975) Comparison of several media for enumeration of cutting fluid fungi. Develop. Indust. Microbiol., 16., 475–482.

    Google Scholar 

  66. Bennett, E.O. (1973) Formaldehyde preservatives for cutting fluids. Internat. Biodeterioration Bull., 9, 95–100.

    CAS  Google Scholar 

  67. Rossmoore, H.W., DeMare, J. and Smith, T.H.F. (1972) Anti-and pro-microbial activity of hexahydro-l,3,5-tris-(2-hydroxyethyl)-s-triazine in cutting fluid emulsion. In Biodeterioration of Materials Vol. 2, Walters, A.H. and Hueck-Van Der Pias, E.H. (eds), John Wiley, New York, pp. 286–293.

    Google Scholar 

  68. Rossmoore, H.W., Holtzman, G.H. and Kondek, L. (1976) Microbiology with a cutting edge. In Proceedings of the Third International Biodeterioration Symposium, Sharpley, J.M. and Kaplan, A.M. (eds), Applied Sciences, London, pp. 221–231.

    Google Scholar 

  69. Hill, E.C, Gibbon, O. and Davies, P. (1976) Biocides for use in oil emulsions. Tribology Internat., 9, 121–130.

    CAS  Google Scholar 

  70. Rossmoore, H.W. (1981) Antimicrobial agents for water-based metalworking fluids. J. Occupational Med., 23, 247–254.

    CAS  Google Scholar 

  71. Smith, T.H.F. (1969) Toxicological and microbiological aspects of cutting fluid preservatives. Lubrication Eng., 25, 313–320.

    CAS  Google Scholar 

  72. Keevil, C.W., MacKerness, C.W. and Colbourne, J.S. (1990) Biocide treatment of biofilms. Internat. Biodeterioration, 26, 169–179.

    Article  CAS  Google Scholar 

  73. Eagon, R.G. and Barnes, CP. (1986) The mechanism of microbial resistance to hexahydro-l,3,5,-triethyl-s-triazine. J. Indust. Microbiol., 1, 113–118.

    Article  CAS  Google Scholar 

  74. Sondossi, M., Rossmoore, H.W. and Wireman, J.W. (1986) The effect of fifteen biocides on formaldehyde-resistant strain of Pseudomonas aeruginosa. J. Indust. Microbiol., 1, 87–96.

    Article  CAS  Google Scholar 

  75. Sondossi, M., Rossmoore, H.W. and Williams, R. (1989) Relative formaldehyde resistance among bacterial survivors of biocide-treated metalworking fluid. Internat. Biodeterioration, 25, 423–437.

    Article  CAS  Google Scholar 

  76. Onyekwelu, I.U., Bennett, E.O. and Gannon, J.E. (1981) The effective life of preservatives in cutting fluid concentrates. Tribology Internat., 14, 7–9.

    Article  Google Scholar 

  77. Onyekwelu, I.U. and Bennett, E.O. (1979) The effects of filtering agents upon the activity of preservatives in cutting fluids. Internat. Biodeterioration Bull., 15, 88–95.

    CAS  Google Scholar 

  78. Bennett, E.O. (1982) The effects of metals upon the inhibitory activities of cutting fluid preservatives. Internat. Biodeterioration Bull., 7–12.

    Google Scholar 

  79. Bennett, E.O., Oppong, D. and Lee, P. (1988) The effects of hydraulic fluids on cutting fluid rancidity control. Soc. Manufact. Eng. Tech. Paper, #MR88-182.

    Google Scholar 

  80. Barman, B.N. and Preston, H.G. (1992) The effects of pH on degradation of isothiazolone biocides. Tribology Internat., 25, 281–287.

    Article  CAS  Google Scholar 

  81. Barman, B.N. (1994) Influence of temperature on the degradation of isothiazolone biocides in aqueous media and in metalworking fluid concentrate. Lubrication Eng., 50, 351–355.

    CAS  Google Scholar 

  82. Heenan, D.F., Burrell, R.E., Hajscar, E.E., Lauzon, D.C. and Dowdle, W.R. (1991) Isothiazolone microbiocide-mediated steel corrosion and its control in aluminum hot rolling emulsions. Lubrication Eng., 47, 545–548.

    CAS  Google Scholar 

  83. Engler, R. (1980) Regulations pertaining to the use of industrial biocides. Develop. Indust. Microbiol., 22, 117–122.

    Google Scholar 

  84. Halleux, P. (1990) Regulatory demands for biocides today. Internat. Biodeterioration, 26, 251–258.

    Article  Google Scholar 

  85. Barnes, C.P. and Eagon, R.G. (1986) The mechanism of action of hexahydro-1,3,5-triethyl-s-triazine. J. Indust. MicrobioL., 1, 105–112.

    Article  CAS  Google Scholar 

  86. Rossmoore, H.W. and Sondossi, M. (1988) Applications and mode of action of formaldehyde condensate biocides. Adv. Appl. Microbiol., 33, 223–277.

    Article  CAS  Google Scholar 

  87. Wheeler, H.O. and Bennett, E.O. (1956) Bacterial inhibitors for cutting oil. Appl. Microbiol., 4, 122–126.

    CAS  Google Scholar 

  88. Singer, M. (1976) Laboratory procedures for assessing the potential of antimicrobial agents as industrial biocides. Process Biochem., 11, 30–35.

    CAS  Google Scholar 

  89. Rossmoore, H.W. (1979) Heterocyclic compounds as industrial biocides. Develop. Microbiol., 20,41–71.

    Google Scholar 

  90. Collier, P.J., Ramsey, A.J., Austin, P. and Gilbert, P. (1990) Growth inhibitory and biocidal activity of some isothiazolone biocides. J. Appl. Bacteriol., 69, 569–577.

    Article  CAS  Google Scholar 

  91. Bennett, E.O. and Futch, H.N. (1960) Nitroparafin inhibitors for cutting fluids. Lubrication Eng., 16, 228–230.

    CAS  Google Scholar 

  92. Bennett, E.O., Gannon, J.E. and Bennett, D.L. (1983) Inhibitory properties of 1,3-propanediols in cutting fluids. Tribology Internat., 16, 199–202.

    Article  CAS  Google Scholar 

  93. Bennett, E.O., Onyekwelu, I.U., and Gannon, J.E. (1979) Corrosion inhibitors as preservatives for metalworking fluids-morpholine compounds. Mater. Perform., 18, 40–45.

    CAS  Google Scholar 

  94. Leder, J. (1987) Glutaraldehyde: A new microbiocide for metalworking©. Lubrication Eng., 43, 666–671.

    CAS  Google Scholar 

  95. Leder, J. and Russo, M.R. (1989) Biocide usage in metalworking fluids: The effect of treatment patterns on efficacy. Lubrication Eng., 45, 217–220.

    CAS  Google Scholar 

  96. Rossmoore, H.W. (1983) Nitrogen compounds. In Disinfection, Sterilization and Preservation, 3rd edn, Block, S.S. (ed.), Lea & Febiger, Philadelphia, pp. 271–307.

    Google Scholar 

  97. Bennett, E.O. (1978) The antimicrobial properties of diethylene triamines in metalworking fluids. Internat. Biodeterioration Bull., 14, 21–29.

    CAS  Google Scholar 

  98. Bennett, E.O., Onyekwelu, I.U., Bennett, D.L. and Gannon, J.E. (1980) Inhibitory activities of triazole compounds in metalworking fluids. Lubrication Eng., 36, 215–218.

    CAS  Google Scholar 

  99. Oppong, D. and Bennett, E.O. (1989) Use of a mixture of alcoholamines to potentiate the antimicrobial activities of certain cutting fluid preservatives. Tribology Internat., 22, 343–346.

    Article  CAS  Google Scholar 

  100. Sandin, M., Mattsby-Baltzer, I. and Edebo, L. (1991) Control of microbial growth in water-based metal-working fluids. Internat. Biodeterioration, 27, 61–74.

    Article  CAS  Google Scholar 

  101. Izzat, I.N. and Bennett, E.O. (1978) The potentiation of the antimicrobial activities of cutting fluid preservatives by EDTA. Lubrication Eng., 35, 153–159.

    Google Scholar 

  102. Izzat, I.N., Bennett, E.O., Gannon, J.E. and Onyekwelu, I.U. (1981) Effects of EDTA on the antimicrobial properties of mixtures of cutting fluids preservatives. Tribology Internat., 14, 171–175.

    Article  CAS  Google Scholar 

  103. Bennett, E.O., Gannon, J.E. and Bennett, D.L. (1982) Effects of EDTA on the antimicrobial properties of mixtures of cutting fluids preservatives. Part II. Tribology Internat., 15, 187–189.

    Article  CAS  Google Scholar 

  104. Piet, L. and Rossmoore, H.W. (1985) A further study of the use of monocopper(II) citrate as an antimicrobial agent in metalworking fluid&x00A9;. Lubrication Eng., 41, 103–105.

    CAS  Google Scholar 

  105. Riha, V.F., Sondossi, M. and Rossmoore, H.W. (1990) The potentiation of industrial biocide activity with Cu2+. II. Synergistic effects with 5-chloro-2-methyl-4-isothiazolin-3-one. Internat. Biodeterioration, 26, 303–313.

    Article  CAS  Google Scholar 

  106. Sondossi, M., Riha, V.F. and Rossmoore, H.W. (1990) The potentiation of industrial biocide activity with Cu2+. I. Synergistic effects with formaldehyde. Internat. Biodeterioration, 26, 51–61.

    Article  CAS  Google Scholar 

  107. Bennett, E.O. (1974) The biologial testing of cutting fluids. Lubrication Eng., 30, 128–135.

    Google Scholar 

  108. Hill, E.C. (1976) Evaluation of biocides for use with petroleum products. Process Biochem., 11, 36–38, 41.

    Google Scholar 

  109. Shennan, J.L. (1983) Selection and evaluation of biocides for aqueous metal-working fluids. Tribology Internat., 16, 317–330.

    Article  CAS  Google Scholar 

  110. Rossmoore, H.W. (1977) Evaluation techniques for biodeterioration of water-miscible metalworking fluids. In Biodeterioration Investigation Techniques, Walters, A.H. (ed.), Applied Science, London, pp. 227–242.

    Google Scholar 

  111. Morton, L.H.G. (1987) Detection of significant spoilage microorganisms in soluble oil-in-water metal-working fluids. In Industrial Microbiological Testing, Hopton, J.W. and Hill, E.C. (eds.), Blackwell Scientific, Palo Alto, California, pp. 221–225.

    Google Scholar 

  112. Rossmoore, H.W., Seszny, P. and Rossmoore, L.A. (1977) Evaluation of source bacterial inoculum in development of a cutting fluid test procedure. Lubrication Eng., 33, 372–377.

    Google Scholar 

  113. Rossmoore, H.W. and Rossmoore, L.A. (1980) The identification of a defined microbial inoculum for the evaluation of biocides in water-based metalworking fluids. Lubrication Eng., 36, 6–20.

    Google Scholar 

  114. Rossmoore, H.W. (1982) The role of the inoculum in the microbiological evaluation of water-based metalworking fluids. In International Yearbook of Tribology, Bartz, W.J. (ed.), Expert Verlag, West Germany, pp. 791–797.

    Google Scholar 

  115. Pivnick, H. and Fabian, F.W. (1953) Methods for testing the germicidal value of chemical compounds for disinfecting soluble oil emulsions. Appl. Microbiol, 1, 204–207.

    CAS  Google Scholar 

  116. Himmelfarb, P. and Scott, A. (1968) Simple circulating tank test for evaluation of germicides in cutting fluid emulsions. Appl. Microbiol., 16, 1437–1438.

    CAS  Google Scholar 

  117. Shennan, J.L. and Chater, K.W.A. (1984) The philosophy and compatibility of biocide additions. In Monitoring and Maintenance of Aqueous Metal-Working Fluids, Chater, K.W.A. and Hill, E.C. (eds), John Wiley, New York, pp. 113–129.

    Google Scholar 

  118. Sharpeil, F.H. (1979) Development of test protocols for antimicrobial agents by the ASTM. Develop. Indust. Microbiol, 20, 73–80.

    Google Scholar 

  119. ASTM (1993) Standard test method for evaluating the bioresistance of water-dilutable metalworking fluids. In Standards on Materials and Environmental Microbiology, 2nd edn, Philadelphia, pp. 642-644.

    Google Scholar 

  120. ASTM (1993) Standard test method for evaluation of antimicrobial agents in aqueous metalworking fluids. In Standards on Materials and Environmental Microbiology, 2nd edn, Philadelphia, pp. 277-279.

    Google Scholar 

  121. Rossmoore, H.W. and Rossmoore, L.A. (1991) Effect of microbial growth products on biocide activity in metalworking fluids. Internat. Biodeterioration, 27, 145–156.

    Article  CAS  Google Scholar 

  122. Brandeberry, L.J. and Myers, H.V., Jr. (1960) Test procedures for compounds used as preservatives in industrial coolants. Lubrication Eng., 16, 161–164.

    Google Scholar 

  123. Rossmoore, H.W. and Williams, B.W. (1971) An evaluation of a laboratory and plant procedure for preservation of cutting fluids. Internat. Biodeterioration Bull., 7, 55–60.

    Google Scholar 

  124. Rogers, M.R., Kaplan, A.M. and Beaumont, E. (1975) A laboratory in-plant analysis of a test procedure for biocides in metalworking fluids. Lubrication Eng., 31, 301–310.

    Google Scholar 

  125. Hill, E.C., Davies, I., Pritchard, J.A.V. and Byron, D. (1967) The estimation of microorganisms in petroleum products. J. Inst. Petroleum, 53, 275–279.

    CAS  Google Scholar 

  126. Rossmoore, H.W. (1971) Methylene blue reduction for rapid inplant detection of coolant breakdown. Internat., Biodeterioration Bull, 7, 147–154.

    Google Scholar 

  127. Yanis, R.J. and Wolfe, G.F. (1960) Test procedures for the evaluation of cutting fluids. Lubrication Eng., 16, 164–170.

    Google Scholar 

  128. Passman, F.J. (1989) Monitoring microbial contamination in metalworking fluds. Soc. Manufact. Eng. Tech. Paper, #MR89-54.

    Google Scholar 

  129. Genner, C. (1976) Evaluation of the dip-slide technique for the mcirobiological testing of industrial fluids. Process Biochem., 11, 39–48.

    Google Scholar 

  130. Genner, C. and Hill, E.C. (1981) Evaluation of the ‘dip-slide’ technique for cutting oils. Tribology Internat., 14, 11–13.

    Article  Google Scholar 

  131. Rossmoore, L.A., Wireman, J.W. and Rossmoore, H.W. (1986) Rapid field method for the detection and enumeration of sulfate reducers. In Biodeterioration 6-Proceedings of the Sixth International Biodeterioration Symposium, Sheila, B. and Houghton, D.R. (eds), C.A.B. Intnl. Mycological Inst., The Biodeterioration Society, United Kingdom, pp. 413–419.

    Google Scholar 

  132. McCoy, J.S. (1978) A practical approach to central system control. Lubrication Eng., 34, 180–186.

    CAS  Google Scholar 

  133. Gannon, J.E. and Bennett, E.O. (1981) A rapid technique for determining microbial loads in metalworking fluids. Tribology Internat., 14, 3–6.

    Article  Google Scholar 

  134. Passman, F.J. (1984) A catalase test for quickly estimating microbial loads in metalworking fluids. Soc. Manufact. Eng. Tech. Paper, #MR84-916.

    Google Scholar 

  135. Hill, E.C. (1987) Spatial distribution of spoilage microbes in fluids using the gel system. In Industrial Microbiological Testing, Hopton, J.W. and Hill, E.C. (eds), Blackwell Scientific, Palo Alto, California, pp. 195–199.

    Google Scholar 

  136. Holdum, R.S. (1977) Microbial spoilage of engineering materials: Part 6-Improving monitoring and control. Tribology Internat., 10, 273–280.

    Article  Google Scholar 

  137. Yust, P.R. and Becket, G.J.P. (1980) Microbiology theory and practice in metalwoking fludis. Indust. Lubrication Tribology, November/December, 220-225.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Chapman & Hall

About this chapter

Cite this chapter

Lee, P.S.K. (1995). Preservation of metalworking fluids. In: Morpeth, F.F. (eds) Preservation of Surfactant Formulations. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0621-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0621-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7514-0222-3

  • Online ISBN: 978-94-011-0621-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics