Skip to main content

Exploration of Selected Pathways for Metabolic Oxidative Ring Opening of Benzene Based on Estimates of Molecular Energetics

  • Chapter

Abstract

Relatively simple methods of thermochemical estimation have been demonstrated to be powerful tools for the prediction of favorable mechanistic pathways in organic chemistry. The purpose of this chapter is to demonstrate their use in estimating the molecular energetics of metabolic reactions of oxygen with organic substrates. In employing this approach, we demonstrate that it is possible to evaluate the likelihood of postulated pathways through analysis of the possible structures and associated energies of intermediates, transition states, and stable products.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altenbach, H. J., and Vogel, E. (1972) Valence Tautomerism of 1,4-Dioxicin with syn-Benzene Dioxide. Angew. Chem. Int. Ed. Engl., 11, 937.

    Google Scholar 

  • Anet, F. (1984) See citation in Schulman et al. (1984).

    Google Scholar 

  • Bartlett, P. D., and Landis, M. E. (1979) The 1,2-Dioxetanes, in Singlet Oxygen (H. H. Wasserman, and R. W. Murray, Eds.), Academic Press, New York, p. 252.

    Google Scholar 

  • Baumstark, A. L., and WILSON, C. F. (1981) The Thermolysis of 3,4-Dialkyl-1,2-dioxetanes: Effect of Cyclic Substituents. Tetrahedron Lett., 22, 4363.

    Article  CAS  Google Scholar 

  • Benson, S. W. (1976) Thermochemical Kinetics, 2nd ed., John Wiley & Sons, New York.

    Google Scholar 

  • Bleasdale, C., Golding, B. T., Kennedy, G., Macgregor, J. O., and WATSON, W. P. (1993) Reactions of Muconaldehyde Isomers with Nucleophiles Including Tri-O-acetylguanosine: Formation of 1,2-Disubstituted Pyrroles from Reaction of the (Z,Z)-Isomer with Primary Amines. Chem. Res. Toxicol, 6, 407.

    Article  CAS  Google Scholar 

  • Bock, C. W., George, P., Stezowski, J. J., and Glusker, J. P. (1990) Theoretical Studies of the Benzene Oxide-Oxepin Valence Tautomerism. Struct Chem., 1, 33.

    Article  CAS  Google Scholar 

  • Bock, C. W., George, P., and Glusker, J. P. (1991) A Computational Molecular Orbital Study of the Oxide and Oxepin Valence Tautomers of Naphthalene. J. Molec. Struct. (Theochem.), 234, 227.

    Article  Google Scholar 

  • Bock, C. W., George, P., Glusker, J. P., and Greenberg, A. (1994) An ab initioComputational Molecular Orbital Study of the Conformers of Muconaldehyde, and the Possible Role of 2-Formyl-2H-Pyran in Bringing about the Conversion of a E,Z-Muconaldehyde Structure into an E,Z- Muconaldehyde Structure. Chem. Res. Toxicol., 7, 534–543.

    Article  CAS  Google Scholar 

  • Bock, C. W., Greenberg, A., Gallagher, J. P., George, P., and Glusker, J. P. (1995) Comparison of Structures, Energetics and Selected Reaction Pathways for 2,3-Epoxy-oxepin and its Hydrocarbon and Mono-oxa Analogues. J. Org. Chem., in press.

    Google Scholar 

  • Bohm, S., and Kuthan, J. (1990) Quantum Chemical Prediction of 2H-Pyran Vibration Spectrum. Collect. Czech. Chem. Commun., 55, 10.

    Article  CAS  Google Scholar 

  • Bunce, N., and Zhu, J. (in press) Reaction Products from Photochemical Reactions of Naphthalene in Air. Polycycl. Arom. Cmpds., 5, 123.

    Google Scholar 

  • Butt, G., Marriott, S., and Topsom, R. D. (1990) Stability of Substituted Pyrilium Salts and the Corresponding 2-H and 4-H Pyrans. Theochem. J. Molec. Struc., 64, 261.

    Article  CAS  Google Scholar 

  • Cerniglia, C. E. (1984) Microbial Transformations of Aromatic Hydrocarbons, in Petroleum Microbiology (R. M. Atlas, Ed.), Macmillan, New York.

    Google Scholar 

  • Cox, J. D., and Pilcher, G. (1970) Thermochemistry of Organic and Organometallic Compounds, Academic Press, London.

    Google Scholar 

  • Cremer, D., Dick, B., and Christeu, D. (1984) Theoretical Determination of Molecular Structure and Conformation. Part 12. Puckering of 1,3,5-Cycloheptatriene, 1H-Azepine, Oxepine and Their Norcaradiene-like Valence Tautomers. Theochem. J. Molec. Struc., 116, 277.

    Article  Google Scholar 

  • DAGLEY, S. (1986) Biochemistry of Aromatic Hydrocarbon Degradation in Pseudomonads, in The Bacteria: A Treatise on Structure and Function, Vol. X, The Biology of Pseudomonas (J. R. Sokatch, Ed.), Academic Press, Orlando, FL, pp. 527–555.

    Google Scholar 

  • Daly, J. W., Jerina, D. M., and Witkop, B. (1972) Arene Oxides and the NIH Shift: The Metabolism, Toxicity and Carcinogenicity of Aromatic Compounds. Experientia, 28, 1129.

    Article  CAS  Google Scholar 

  • Davies, S. G., and Whitham, G. H. (1977) Benzene Oxide-oxepin. Oxidation to Muconaldehyde. J. Chem. Soc., Perkin Trans., 1, 1346.

    Google Scholar 

  • Foote, C. S., and Clennan, E. L. (1995) Properties and Reactions of Singlet Dioxygen, in Reactive Oxygen in Chemistry (C. S. Foote, J. S. Valentine, A. Greenberg, and J. F. Liebman, Eds.), Chapman and Hall, New York, Chap. 5.

    Google Scholar 

  • Gallinella, E., and Cadioli, B. (1991) Theoretical and Experimental Study of the Non-s-cis Form of Unsaturated Ethers. Molecular Structure and Vibrational Assignment of the High-energy Isomer of Methylvinylether. J. Molec. Struct., 249, 343.

    Article  CAS  Google Scholar 

  • Gibson, D. T. (1968) Microbial Degradation of Aromatic Compounds. Science, 161, 1093.

    Article  CAS  Google Scholar 

  • Gibson, D. T., and Chapman, P. J. (1971) The Microbial Oxidation of Aromatic Hydrocarbons, in CRC Critical Reviews in Microbiology, CRC Press, Boca Raton, FL, pp. 199–222.

    Google Scholar 

  • Gibson, D. T., and Subramanian, V. (1984) Microbial Degradation of Aromatic Hydrocarbons, in Microbial Degradation of Organic Compounds (D. T. Gibson, Ed.), Marcel Dekker, New York, pp. 181–252.

    Google Scholar 

  • Gibson, D. T., Yeh, W. K., Liu, T. N., and Subramanian, V. (1982) Toluene Dioxygenase: A Multicomponent Enzyme System from Pseudomonas putida, in Oxygenases and Oxygen Metabolism (N. Nozaki, S. Yamamoto, Y. Ishimura, M. J. Coon, L. Ernster, and R. W. Estabrook, Eds.), Academic Press, New York, pp. 51–62.

    Google Scholar 

  • Golding, B. T., Kennedy, G., and Watson, W. P. (1988) Simple Syntheses of Isomers of Muconaldehyde and 2-Methylmuconaldehyde. Tetrahedron Lett., 29, 5991.

    Article  CAS  Google Scholar 

  • Goldstein, B. D., and Witz, G. (1991) Benzene, in Critical Reviews of Environmental Toxicants-Human Exposure and Their Health Effects (M. Lippmann, Ed.), Van Nostrand Reinhold, New York, Chap. 3.

    Google Scholar 

  • Goldstein, B. D., Witz, G., Javid, J., Amoruso, M. A., Rossman, T., and Wolder, B. (1982) Muconaldehyde, a Potential Toxic Intermediate of Benzene Metabolism, in Biological Reactive Intermediates (R. Snyder, D. V. Parke, J. J. Kocsis, D. J. Jallow, C. G. Gibson, and C. M. Witmer, Eds.), Plenum Press, New York, 2, Part A, pp. 331–339.

    Chapter  Google Scholar 

  • Goon, D., Cheng, X., Ruth, J. A., Petersen, D. R., and Ross, D. (1992) Metabolism of trans,trans-Muconaldehyde by Aldehyde and Alcohol Dehydrogenase: Identification of a Novel Metabolite. Toxicol. Appl. Pharmacol, 114, 147.

    Article  CAS  Google Scholar 

  • Greenberg, A. (1993) We have employed Benson group increments (Benson, 1976), with some very minor additions where data were lacking. To calculate Hf(g) for benzene oxide (18) (in kcal/mol), the following increments were employed: O-(C)2 (-23.7); Cd-(C)(H) (+8.6); Cd-(Cd)(H) (+6.8); C-O(C)(Cd)(H) (-5.3). The last value was estimated through comparison of C-(O)(Cd)(H)2 (-6.9), C-(O)(C)(H)2 (-8.6), and C-(O)(C)2 (H) (-6.9). While it is tempting to simply sum the ring strain corrections for bicyclo-[4.1.0]heptane (28.9) and 1, 3-cyclohexadiene (1.2), there is no a priorijustification for this assumption. Instead, we compared the experimental Hf(g) for bicyclo[4.1.0]hexa-2,4-diene (norcaradiene) (+49.5 kcal/ mol; see text) with the value calculated using Benson group increments, without correction for ring strain: C-(C)2 (H)2 (-4.9); C-(C)2 (Cd)(H) (-1.5); Cd-(C)(H) (+35.9); Cd-(Cd)(H) (+6.8). The sum of the group increments is +22.8kcal/mol. The effective strain correction (49.5–22.7 = 26.8kcal/mol) is then transferred to benzene oxide, implicitly assuming that any difference in strain between cyclopropane and ethylene oxide is very small relative to the errors in estimation. Thus, Hf (18) =-23.7 + 2(-5.3) + 2(8.6) + 2(6.8) + 26.8 = +23.3kcal/mol. The assumptions involved in our use of the group increment scheme are not completely independent of eqs. (17) and (18) since these equations use the experimental Hf(g) for norcaradiene used in generating the 26.8kcal/mol ring strain correction factor. It is interesting to remark on the result that the ring correction factor for norcaradiene (26.8) is smaller than the sum of the correction factors (33.7) and even smaller than the factor for bicyclo[4.1.0]heptane (28.9) alone. Perhaps this 2-7kcal/mol discrepancy is due to some aromatic stabilization in norcaradiene wherein the cyclopropane ring acts as a “mitigated ethylene.” Indeed, Rao et al. (1993) make a case for aromatic stabilization of benzene oxide which would, of course, reduce the apparent antiaromaticity of oxepin.

    Google Scholar 

  • Greenberg, A., Bock, C, George, P., and Glusker, J. P. (1993) Energetics of the Metabolic Production of E,E-Muconaldehyde from Benzene Via the Intermediates 2,3-Epoxy-Oxepin, Z,Z-and E,Z-Muconaldehyde: Ab InitioMolecular Orbital Calculations. Chem. Res. Toxicol, 6, 701.

    Article  CAS  Google Scholar 

  • Greenberg, A., Bock, C., George, P., and Glusker, P. (1994) Mechanism of Metabolic Ring Opening of Benzene and its Relation to Mammalian PAH Metabolism. Polycycl. Arom. Cmpds., 7, 123.

    Article  CAS  Google Scholar 

  • Grimme, W., Doering, W. V. E. (1973) Eine Degenierte Butadienylcyclo-propan-Umlagerung in Bicyclo-[5.1.0]octa-2,4-dien. Chem. Ber., 106, 1765.

    Article  CAS  Google Scholar 

  • Haggblom, M. (1992) Microbial Breakdown of Halogenated Aromatic Pesticides and Related Compounds. FEMS Microbiol. Rev., 103, 29.

    Article  CAS  Google Scholar 

  • Halcomb, R. L., Boyer, S. H., and Danishefsky, S. J. (1992) Synthesis of the Calicheamicin Aryltetrasaccharide Domain Bearing a Reducing Terminus: Coupling of Fully Synthetic Aglycone and Carbohydrate Domains by the Schmidt Reaction. Angew. Chem. Int. Ed. Engl, 31, 338.

    Article  Google Scholar 

  • Hamilton, G. A. (1969) Mechanism of Two-and Four-electron Oxidations Catalyzed by Some Metalloenzymes, in Advances in Enzymology (F. F. Nord, Ed.), John Wiley and Sons, New York, 32, pp. 55–96.

    Google Scholar 

  • Hamilton, G. A. (1973) On the Oxygenated Intermediate in Enzymatic Oxygenation (discussion section), in Oxidases and Related Redox Systems (T. E. King, H. S. Mason, and M. Morrison, Eds.), University Park Press, Baltimore, 1, pp. 135–138.

    Google Scholar 

  • Harayama, S., and Timmis, K. N. (1989) Catabolism of Aromatic Hydrocarbons, in Genetics of Bacteria Diversity (D. A. Hopwood, and K. F. Chater, Eds.), Academic Press, London, pp. 151–174.

    Chapter  Google Scholar 

  • Harvey, R. G. (1991) Polycyclic Aromatic Hydrocarbons. Chemistry and Carcinogenicity. Cambridge University Press, Cambridge, pp. 276–280.

    Google Scholar 

  • Herzberg, G. (1950) Molecular Spectra and Molecular Structure, Spectra of Diatomic Molecules, 2nd ed., Van Nostrand, New York, I, p. 560.

    Google Scholar 

  • Jerina, D. M., and Daly, J. W. (1974) Arene Oxides: A New Aspect of Drug Metabolism. Science, 185, 573.

    Article  CAS  Google Scholar 

  • Jones, R. R., and Bergman, R. G. (1972) (atp-Benzyne Generation as an Intermediate in a Thermal Isomerization Reaction and Trapping Evidence for the 1,4-Benzenediyl Structure. J. Am. Chem. Soc, 94, 660.

    Article  CAS  Google Scholar 

  • Kaplan, M. L., and Trozzolo, A. M. (1979) Role of Singlet Oxygen in the Degradation of Polymers, in Singlet Oxygen (H. H. Wasserman and R. W. Murray, Eds.), Academic Press, New York, p. 584.

    Google Scholar 

  • Kirley, T. A., Goldstein, B. D., Maniara, W. M., and Witz, G. (1989) Metabolism of trans, trans-Muconaldehyde, a Microsomal Hematotoxic Metabolite of Benzene, by Purified Yeast Aldehyde Dehydrogenase and a Mouse Liver Soluble Fraction. Toxicol. Appl. Pharmacol., 100, 360.

    Article  CAS  Google Scholar 

  • Kline, S. A., Xiang, Q., Goldstein, B. D., and Witz, G. (1993) Reaction of (E,E)-Muconaldehyde and Its Aldehydic Metabolites (E,E)-6-Oxohexadienoic Acid and (E,E)-6-Hydroxy-2,4-dienal with Glutathione. Chem. Res. Toxicol, 6, 578.

    Article  CAS  Google Scholar 

  • Latriano, L., Goldstein, B. D., and Witz, G. (1986a) Formation of Muconaldehyde, an Open-ring Metabolite of Benzene, in Mouse Liver Microsomes: An Additional Pathway for Toxic Metabolites. Proc. Natl. Acad. Sci. U.S.A., 83, 8356.

    Article  CAS  Google Scholar 

  • Latriano, L., Zaccaria, A., Goldstein, B. D., and Witz, G. (1986b) Muconaldehyde Formation from Free 14C-Benzene in a Hydroxyl-radical Generating System. J. Free Radical Biol. Med., 1, 363.

    Article  Google Scholar 

  • Lee, M. D., Dunne, T. S., Chang, C. C., Ellestad, G. A., Siegel, M. M., Morton, G. O., Mcgahren, W. J., and Borders, D. B. (1987b) Calichemicins, a Novel Family of Antitumor Antibiotics. 2. Chemistry and Structure of Calichemicin!. J. Am. Chem. Soc, 109, 3466.

    Article  CAS  Google Scholar 

  • Lee, M. D., Dunne, T. S., Siegel, M. M., Chang, C. C, Morton, G. O., and Borders, D. B. (1987a) Calichemicins, a Novel Family of Antitumor Antibiotics. 1. Chemistry and Partial Structure of Calichemicin1. J. Am. Chem. Soc., 109, 3464.

    Article  CAS  Google Scholar 

  • Leibovitch, M., Kresge, A. J., Peterson, M. R., and Csizmadia, I. G. (1991) Ab initioInvestigation of the Structure and Reactivity of Vinyl Ether. J. Molec. Struct. (Theochem.), 230, 349.

    Article  Google Scholar 

  • Lias, S. G., Bartmess, J. E., Liebman, J. F., Holmes, J. L., Levin, R. D., and Mallard, W. G. (1988) Gas-Phase Ion and Neutral Thermochemistry. J. Phys. Chem. Ref. Data, 17, Supplement 1.

    Google Scholar 

  • Liebman, J. F., and Greenberg, A. (1974) Estimation by Bond-additivity Schemes of the Relative Thermodynamic Stabilities of Three-membered Ring Systems and Their Open Dipolar Forms, J. Org. Chem., 39, 123.

    Article  Google Scholar 

  • Liebman, J. F., and Greenberg, A. (1989) Survey of the Heats of Formation of Three-membered-ring Species. Chem. Rev., 89, 1225.

    Article  CAS  Google Scholar 

  • Liebman, J. F., and Van Vechten, D. (1987) Universality: The Differences and Equivalences of Heats of Formation, Strain Energy and Resonance Energy, in Molecular Structure and Energetics, vol. 2, Physical Measurements, (J. F. Liebman, and A. Greenberg, Eds.), VCH, New York, pp. 315–374.

    Google Scholar 

  • Mello, R., Ciminale, F., Fiorentino, M., Fusco, C., Prencipe, T., and Curci, R. (1990) Oxidation by Methyl(trifluoromethyl) dioxirane. 4. Oxyfunctionalizations of Aromatic Hydrocarbons. Tetrahedron Lett., 31. 6097

    Article  CAS  Google Scholar 

  • Moss, R. A. (1993) The author acknowledges the suggestion of Professor Robert A. Moss concerning the DNA cross-linking potential of mucon-aldehyde.

    Google Scholar 

  • Nakajima, M., Tomida, I., and Takei, S. (1959) The Chemistry of 3,5-Cyclohexadiene-l,2-diol. IV. Preparation of cis-3,5-Cyclohexadiene-l,2-diol, the Stereoisomeric Muconic Dialdehydes and Conduritol F. Chem. Ber., 92, 163.

    Article  CAS  Google Scholar 

  • Nicolaou, K. C., Schreiner, E. P., Iwabuchi, Y., and Suzuki, T. (1992b) Total Synthesis of Calichemaicin-Dynemicin Hybrid Molecules. Angew. Chem. Int. Ed. Engl. 31, 340.

    Article  Google Scholar 

  • Nicolaou, K. G., Sorensen, E. J., Discordia, R., Hwang, C. K., Minto, R. E., Bharucha, K. N., and Bergman, R. G. (1992a) Ten-membered Ring Enediynes with Remarkable Chemical and Biological Profiles. Angew. Chem., Int. Ed. Engl, 31, 1044.

    Article  Google Scholar 

  • Niehs (1989) Benzene Metabolism, Toxicity and Carcinogenesis, Environ. Health Perspect. 1989, 82.

    Google Scholar 

  • Pedley, J. B., Naylor, R. D., and Kirby, S. P. (1986) Thermochemical Data of Organic Compounds, 2nd ed., Chapman and Hall, London.

    Book  Google Scholar 

  • Rao, S. N., More O’Farrell, R. A., Kelly, S. C, Boyd, D. R., and Agarwal, R. (1993) Acid-catalyzed Aromatization of Arene Oxides and Arene Hydrates: Are Arene Oxides Homoaromatic? J. Am. Chem. Soc., 115, 5458.

    Article  CAS  Google Scholar 

  • Schauenstein, E., Esterbauer, H., and Zollner, H. (1977) Aldehydes in Biological Systems, Methuen, New York, pp. 25–88.

    Google Scholar 

  • Schulman, J. M., Disch, R. L., and Sabio, M. L. (1984) Energetics of Valence Isomerization in Seven-membered Rings. Cycloheptatriene-norcaradiene and Related Rearrangements. J. Am. Chem. Soc, 106, 7696.

    Article  CAS  Google Scholar 

  • Snyder, R., Witz, G., and Goldstein, B. D. (1993) The Toxicology of Benzene. Environ. Health Perspect., 100, 293.

    Article  CAS  Google Scholar 

  • Stillwell, W. G., Bouwsma, O. J., Thenot, J. P., Horning, M. G., Griffin, G. W., Ishikawa, K., and Takaku, M. (1978) Methylthio Metabolites of Naphthalene Excreted by the Rat. Res. Commun. Chem. Pathol. Pharmacol, 20, 509.

    CAS  Google Scholar 

  • Stull, D. S., Westrum, E. F., JR., and Sinke, G. C. (1969) The Chemical Thermodynamics of Organic Compounds, John Wiley and Sons, New York.

    Google Scholar 

  • Tomida, I., and Nakajima, M. (1960) The Chemistry of 3,5-Cyclohexadiene-1,2-diol. VI. Metabolism of the Glycols and Muconic Dialdehyde. Z. Physiol. Chem., 318, 171.

    Article  CAS  Google Scholar 

  • Van Den Heuvel, C. J. M., Hofland, A., Steinberg, H., and De Boer, T. J. (1980) The Photo-oxidation of Hexamethylbenzene and by Singlet Oxygen. Recl. Trav. Chim. Pays-Bas., 99, 275.

    Article  Google Scholar 

  • Vogel, A., and Gunther, H. (1967) Benzene Oxide-Oxepin Valence Tautomerism. Angew. Chem. Int. Ed. Engl., 6, 385.

    Article  CAS  Google Scholar 

  • Wang, C. H., and Kachurina, N. S. (1988) Thermochemical Properties of Oxirane Derivatives. Russ. J. Phys Chem. (Engl. Trans.), 61, 622.

    Google Scholar 

  • Wei, K., Mani, J. C., and Pitts, J. N., JR. (1967) The Formation of Polyenic Dialdehydes in the Photooxidation of Pure Liquid Benzene. J. Am. Chem. Soc., 89, 4225.

    Article  CAS  Google Scholar 

  • Wenthold, P. G., Paulino, J. A., and Squires, R. R. (1991) The Absolute Heats of Formation of o-, m-, and p-Benzyne. J. Am. Chem. Soc, 113. 7414.

    Article  CAS  Google Scholar 

  • Whited, G. M., and Gibson, D. T. (1991) Toluene-4-Monooxygenase, a Three-component Enzyme System That Catalyzes the Oxidation of Toluene to p-Cresol in Pseudomonas mendocinaKR1. J. Bacteriol., 173, 3010.

    CAS  Google Scholar 

  • Williams, R. T. (1959) Detoxification Mechanisms: The Metabolism of Detoxification of Drugs, Toxic Substances and Other Organic Compounds, 2nd ed., John Wiley and Sons, New York, pp. 188–194.

    Google Scholar 

  • Yang, C. S. (1993) The oxidation of the dihydrodiol was suggested as a possibility by Professor C. S. Yang, by analogy to the oxidation oberved for glycerol [Clejan, L. A., and Cederbaum, A. I. (1992) Role of Cytochrome P450 in the Oxidation of Glycerol by Reconstituted Systems and Microsomes. FASEB J., 6, 765.

    Google Scholar 

  • Young, L. (1987) in Toxic Chemicals, Health and the Environment (L. B. Lave, and A. C. Upton, Eds.), Johns Hopkins University Press, Baltimore, p. 222.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Greenberg, A. (1995). Exploration of Selected Pathways for Metabolic Oxidative Ring Opening of Benzene Based on Estimates of Molecular Energetics. In: Valentine, J.S., Foote, C.S., Greenberg, A., Liebman, J.F. (eds) Active Oxygen in Biochemistry. Structure Energetics and Reactivity in Chemistry Series (SEARCH series), vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0609-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0609-2_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7514-0372-5

  • Online ISBN: 978-94-011-0609-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics