Skip to main content

Oxygen Activation at Nonheme Iron Centers

  • Chapter
Active Oxygen in Biochemistry

Abstract

Progress in understanding the mechanism of dioxygen activation by nonheme iron enzymes has lagged behind that of their heme counterparts, probably because of their relative spectroscopic inaccessibility. However, developments in the past decade have resulted in greater efforts in this subfield and provided insights into how such enzymes function. As a group, these enzymes catalyze a diverse array of metabolically important reactions which involve a number of interesting chemical transformations. The chapter will focus on the mechanistic principles that tie together these seemingly unrelated reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, M. T., and Udenfriend, S. (1974) α-Ketoglutarate-coupled Dioxygenases, in Molecular Mechanisms of Oxygen Activation (O. Hayaishi, Ed.), Academic Press, New York, pp. 167–214.

    Google Scholar 

  • Åberg, A., Ormö, M., Nordlund, P., and Sjöberg, B. M. (1993). Autocatalytic Generation of Dopa in the Engineered Protein R2 F208Y from Escherichia coliRibonucleotide Reductase and Crystal Structure of the Dopa-208 Protein. Biochemistry, 32, 9845–9850.

    Google Scholar 

  • Ahmad, S., McCallum, J. D., Shiemke, A. K., Appelman, E. H., Loehr, T. M., and Sanders-Loehr, J. (1988) Raman Spectroscopic Evidence for Side-on Binding of Peroxide Ion to Fe111 (edta). Inorg. Chem., 27, 2230–2233.

    CAS  Google Scholar 

  • Andersson, K. K., Cox, D. D., Que, L., Jr., Petersson, L., Flatmark, T., and Haavik, J. (1988) Resonance Raman Studies on the Blue Green-colored Bovine Adrenal Tyrosine 3-Monooxygenase (Tyrosine Hydroxylase). Evidence That the Feedback Inhibitors Adrenaline and Nonadrenaline Are Coordinated to Iron.J. Biol. Chem., 263, 18621–18626.

    CAS  Google Scholar 

  • Andersson, K. K., Froland, W. A., Lee., S.-K., and Lipscomb, J. D. (1991) Dioxygen Independent Oxygenation of Hydrocarbons by Methane Monooxygenase Hydroxylase Component. New J. Chem., 15, 411–415.

    CAS  Google Scholar 

  • Andersson, K. K., Vassort, C., Brennan, B. A., Que, L., Jr., and Wallick, D. E. (1992) Purification and Characterization of the Blue-green Rat Phaeochromocytoma (PC12) Tyrosine Hydroxylase with a Dopamine-Fe (III) Complex. Biochem. J., 284, 687–695.

    CAS  Google Scholar 

  • Arciero, D. M., and Lipscomb, J. D. (1986) Binding of 17O-labeled Substrate and Inhibitors to Protocatechuate 4,5-Dioxygenase-Nitrosyl Complex. J. Biol. Chem., 261, 2170–2178.

    CAS  Google Scholar 

  • Arciero, D. M., Orville, A. M., and Lipscomb, J. D. (1985) [17O] Water and Nitric Oxide Binding by Protocatechuate 4,5-Dioxygenase and Catechol 2,3-Dioxygenase. J. Biol. Chem., 260, 14035–14044.

    CAS  Google Scholar 

  • Atkin, C., Thelander, L., Reichard, P., and Lang, G. (1973) Iron and Free Radical in Ribonucleotide Reductase. J. Biol. Chem., 248, 7464–7472.

    CAS  Google Scholar 

  • Atta, M., Nordlund, P., Åberg, A., Eklund, H., and Fontecave, M. (1992) Substitution of Manganese for Iron in Ribonucleotide Reductase from Escherichia coli.Spectroscopic and Crystallographic Characterization. J. Biol. Chem., 26, 20682–20688.

    Google Scholar 

  • Baldwin, J. E., and Abraham, E. (1988) The Biosynthesis of Penicillins and Cephalosporins. Natur. Prod. Rep., 5, 129–145.

    CAS  Google Scholar 

  • Baldwin, J. E., Adlington, R. M., Bradley, M., Pitt, A. R., and Turner, N. J. (1989) Evidence for Epoxide Formation from Isopenicillin N Synthase. J. Chem. Soc. Chem. Commun., 978–981.

    Google Scholar 

  • Baldwin, J. E., Adlington, R. M., Domayne-Hayman, B. P., Knight, G., and Ting, H.-H. (1987) Use of the Cyclopropylcarbinyl Test to Detect a Radical-like Intermediate in Penicillin Biosynthesis. J. Chem. Soc. Chem. Commun., 1661–1663.

    Google Scholar 

  • Baldwin, J. E., and Bradley, M. (1990) Isopenicillin N Synthase: Mechanistic Studies. Chem. Rev., 90, 1079–1088.

    CAS  Google Scholar 

  • Baldwin, J. E., Lynch, G. P., and Schofield, C. J. (1991) Isopenicillin N Synthase: A New Mode of Reactivity. J. Chem. Soc. Chem. Commun., 736–738.

    Google Scholar 

  • Baldwin, J. E., Norris, W. J., Freeman, R. T., Bradley, M., Adlington, R. M., Long-Fox, S., and Schofield, C. J. (1988) γ-Lactam Formation from Tripeptides with Isopenicillin N Synthase. J. Chem. Soc. Chem. Commun., 1128–1130.

    Google Scholar 

  • Barbaro, P., Bianchini, C., Linn, K., Mealli, C., Meli, A., Vizza, F., and Zanello, P. (1992) Dioxygen Uptake and Transfer by Co(III), Rh(III) and Ir(III) Catecholate Complexes. Inorg. Chim. Acta, 198–200, 31-56.

    Google Scholar 

  • Barbaro, P., Bianchini, C., Mealli, C., and Meli, A. (1991) Synthetic Models for Catechol 1,2-Dioxygenases. Interception of a Metal Catecholate-Dioxygen Adduct. J. Am. Chem. Soc., 113, 3181–3183.

    CAS  Google Scholar 

  • Batie, C. J., LaHai, E., and Ballou, D. P. (1987) Purification and Characterization of Phthalate Oxygenase and Phthalate Oxygenase Reductase from Pseudomonas cepacia. J. Biol. Chem., 262, 1510–1518.

    CAS  Google Scholar 

  • Benkovic., S. J., Bloom, L. M., Bollag, G., Dix, T. A., Gaffney, B., and Pember, S. (1986) The Mechanism of Action of Phenylalanine Hydroxylase. Ann. N.Y. Acad. Sci., 471, 226–232.

    CAS  Google Scholar 

  • Bernhardt, F. H., and Kuthan, H. (1981) Dioxygen Activation by Putidamonooxin: The Oxygen Species Formed and Released Under Uncoupling Conditions. Eur. J. Biochem., 120, 547–555.

    CAS  Google Scholar 

  • Bianchini, C., Frediani, P., Laschi, F., Meli, A., Vizza, F., and Zanello, P. (1990) A Novel Oxygen-carrying and Activating System of Rhodium(III). Oxidation and Oxygenation Reactions of 3,5-Di-tert-butylcatechol Catalyzed by a Rhodium(III) Catecholate through Its (η1-Superoxo)η2-semiquinonato) rhodium(III) Complex. Inorg. Chem., 29, 3402–3409.

    CAS  Google Scholar 

  • Bill, E., Bernhardt, F.-H., Trautwein, A. X., and Winkler, H. (1985) Mössbauer Investigation of the Cofactor Iron of Putidamonooxin. Eur. J. Biochem., 147, 177–182.

    CAS  Google Scholar 

  • Bollinger, J. M., Edmondson, D. E., Huynh, B. H., Filley, J., Norton, J., and Stubbe, J. (1991a) Mechanism of Assembly of the Tyrosyl Radical-Dinuclear Iron Cluster Cofactor of Ribonucleotide Reductase. Science (Washington, D. C.), 253, 292–298.

    CAS  Google Scholar 

  • Bollinger, J. M., Stubbe, J., Huynh, B. H., and Edmondson, D. E. (1991b) Novel Diferric Radical Intermediate Responsible for Tyrosyl Radical Formation in Assembly of the Cofactor of Ribonucleotide Reductase. J. Am. Chem. Soc., 113, 6289–6291.

    CAS  Google Scholar 

  • Bollinger, J. M., Jr., Tong, W. H., Ravi, N., Huynh, B. H., Edmonson, D. E., and Stubbe, J. (1994a). Mechanism of Assembly of the Tyrosyl Radical-Diiron (III) Cofactor of E. coliRibonucleotide Reductase. 2. Kinetics of the Excess Fe2+ Reaction by Optical, EPR, and Mössbauer Spectroscopies. J. Am. Chem. Soc., 116, 8015–8023.

    CAS  Google Scholar 

  • Bollinger, J. M, Jr., Tong, W. H., Ravi, N., Huynh, B. H., Edmonson, D. E. and Stubbe, J. (1994b). Mechanism of Assembly of the Tyrosyl Radical-Diiron(III) Cofactor of E. coliRibonucleotide Reductase. 3. Kinetics of the Limiting Fe2+ Reaction by Optical, EPR, and Mössbauer Spectroscopies. J. Am. Chem. Soc., 116, 8024–8032.

    CAS  Google Scholar 

  • Borovik, A. S., Hendrich, M. P., Holman, T. R., Que, L., Jr., Papaefthymiou, V., and Münck, E. (1990) Models for Diferrous Forms of Iron-oxo Proteins. Structure and Properties of [Fe2BPMP(O2CR)2]BPh4Complexes. J. Am. Chem. Soc., 112, 6031–6038.

    CAS  Google Scholar 

  • Bradley, F. C., Lindstedt, S., Lipscomb, J. D., Que, L., Jr., Roe, A. L., and Rundgren, M. (1986) 4-Hydroxyphenylpyruvate Dioxgenase is an Irontyrosinate Protein. J. Biol. Chem., 261, 11693–11696.

    CAS  Google Scholar 

  • Brown, S. J., Hudson, S. E., Stephan, D. W., and Mascharak, P. K. (1989) Syntheses, Structures, and Spectral Properties of a Synthetic Analogue of Copper(II)-bleomycin and an Intermediate in the Process of Its Formation. Inorg. Chem., 28, 468–477.

    CAS  Google Scholar 

  • Brown, S. J., and Mascharak, P. K. (1988) Characterization of a Crystalline Synthetic Analogue of Copper(II)-bleomycin. J. Am. Chem. Soc., 110, 1996.

    CAS  Google Scholar 

  • Bull, C., Ballou, D. P., and Otsuka, S. (1981) The Reaction of Oxygen with Protocatechuate 3,4-Dioxygenase from Pseudomonas putida. J. Biol. Chem., 256, 12681–12686.

    CAS  Google Scholar 

  • Burger, R. M., Blanchard, J. S., Horwitz, S. B., and Peisach, J. (1985) The Redox State of Activated Bleomycin. J. Biol. Chem., 260, 15406–15409.

    CAS  Google Scholar 

  • Burger, R. M., Kent, T. A., Horwitz, S. B., Münck, E., and Peisach, J. (1983) Mössbauer Study of Iron Bleomycin and Its Activation Intermediates. J. Biol. Chem., 258, 1559–1564.

    CAS  Google Scholar 

  • Burger, R. M., Peisach, J., and Horwitz, S. B. (1981) Activated Bleomycin. J. Biol. Chem., 256, 11636–11644.

    CAS  Google Scholar 

  • Celikel, R., Davis, M. D., Dai, X., Kaufman, S., and Xuong, N. (1991) Crystallization and Preliminary X-ray Analysis of Phenylalanine Hydroxylase from Rat Liver. J. Mol. Biol., 218, 495–498.

    CAS  Google Scholar 

  • Chaudhuri, P., Wieghardt, K., Nuber, B., and Weiss, J. (1985) [L2Fe2 11 (μ-CH3CO2)2](CIO4) · H2O, a Model Compound of the Diiron Centers in Deoxyhemerythrin. Angew. Chem. Int. Ed. Engl., 24, 778–779.

    Google Scholar 

  • Chen, V. J., Frolik, C. A., Orville, A. M., Harpel, M. R., Lipscomb, J. D., Surerus, K. K., and Münck, E. (1989) Spectroscopic Studies of Isopenicillin N Synthase. J.Biol. Chem., 264, 21677–21681.

    CAS  Google Scholar 

  • Chiou, Y.-M., and Que, L., Jr. (1995) Models for α-Keto Acid-dependent Non-heme Iron Enzymes. Structures and Reactivity of [Fe11 (L)(O2CCOPh)] (ClO4),pyridyl)methyl]amine](benzoylformate)](C1O4). J. Am. Chem. Soc., 117, 3999–4013.

    CAS  Google Scholar 

  • Clark, P. E., and Webb, J. (1981) Mössbauer Spectroscopic Studies of Hemerythrin from Phascolosoma lurco. Biochemistry, 20, 4628–4632.

    CAS  Google Scholar 

  • Cox, D. D., BenkoviC., S. J., Bloom, L. M., Bradley, F. C., Nelson, M. J., Que, L., Jr., and Wallick, D. E. (1988) Catecholate LMCT Bands as Probes for the Active Sites of Nonheme Iron Oxygenases. J. Am. Chem. Soc., 110, 2026–2032.

    CAS  Google Scholar 

  • Cox, D. D., and Que, L., Jr. (1988) Functional Models for Catechol 1,2-Dioxygenase. The Role of the Iron(III) Center. J. Am. Chem. Soc., 110, 8085–8092.

    CAS  Google Scholar 

  • Dalton, H. (1980) Oxidation of Hydrocarbons by Methane Monooxygenases from a Variety of Microbes. Adv. Appl. MicroBiol., 26, 71–87.

    CAS  Google Scholar 

  • Dawson, J. H. (1988) Probing Structure-Function Relations in Heme-Containing Oxygenases and Peroxidases. Science, 240, 433–439.

    CAS  Google Scholar 

  • Dawson, J. W., Gray, H. B., Hoenig, H. E., Rossman, G. R., Schredder, J. M., and Wang, R.-H. (1972) A Magnetic Susceptibility Study of Hemerythrin Using an Ultrasensitive Magnetometer. Biochemistry, 11, 461–465.

    CAS  Google Scholar 

  • DeWitt, J. G., Bentsen, J. G., Rosenzweig, A. C., Hedman, B., Green, J., Pilkington, S., Papaefthymiou, G. C., Dalton, H., Hodgson, K. O., and Lippard, S. J. (1991) X-ray Absorption, Mössbauer, and EPR Studies of the Dinuclear Iron Center in the Hydroxylase Component of Methane Monooxygenase. J. Am. Chem. Soc., 113, 9219–9235.

    CAS  Google Scholar 

  • Dix, T. A., and Benkovic., S. J. (1988) Mechanism of Oxygen Activation by Pteridine-Dependent Monooxygenases. Accts. Chem. Res., 21, 101–107.

    CAS  Google Scholar 

  • Dong, Y., Fujii, H., Hendrich, M. P., Leising, R. A., Pan, G., Randall, C. R., Wilkinson, E. C., Zang, Y., Que, L., Jr., Fox, B. G., Kauffmann, K., and Münck, E. (1995) A High Valent Nonheme Iron Intermediate. Structure and Properties of [Fe2 (μ-O)2 (5-Me-TPA)2](C1O4)3. J. Am. Chem. Soc., 117, 2778–2792.

    CAS  Google Scholar 

  • Dong, Y., Ménage, S., Brennan, B. A., Elgren, T. E., Jang, H. G., Pearce, L. L., and Que, L., Jr. (1993) Dioxygen Binding to Diferrous Centers. Models for Diiron-oxo Proteins. J. Am. Chem. Soc., 115, 1851–1859.

    CAS  Google Scholar 

  • Felton, R. H., Barrow, W. L., May, S. W., Sowell, A. L., Goel, S., Bunker, G., and Stern, E. A. (1982) EXAFS and Raman Evidence for Histidine Binding at the Active Site of Protocatechuate 3,4-Dioxygenase. J. Am. Chem. Soc., 22, 6132–6134.

    Google Scholar 

  • FelTOn, R. H., Cheung, L. D., Phillips, R. S., and May, S. W. (1978) A Resonance Raman Study of Substrate and Inhibitor Binding to Protocatechuate-3,4-Dioxygenase. Biochem. Biophys. Res. Commun., 85, 844–850.

    CAS  Google Scholar 

  • Fontecave, M., Eliasson, R., and Reichard, P. (1989) Enzymatic Regulation of the Radical Content of the Small Subunit of E. coliRibonucleotide Reductase Involving Reduction of its Redox Centers. J. Biol. Chem., 264, 9164–9170.

    CAS  Google Scholar 

  • Fontecave, M., Gerez, C., Atta, M., and Jeunet, A. (1990) High Valent Iron Oxo Intermediates Might Be Involved During Activation of Ribonucleotide Reductase: Single Oxygen Atom Donors Generate the Tyrosyl Radical. Biochem. Biophys. Res. Commun., 168, 659–664.

    CAS  Google Scholar 

  • Fox, B. G., Froland, W. A., Dege, J., and Lipscomb, J. D. (1989) Methane Monooxygenase from Methylosinus trichosporiumOB3b. Purification and Properties of a Three-component System with High Specific Activity from a Type II Methanotroph. J. Biol. Chem., 264, 10023–10033.

    CAS  Google Scholar 

  • Fox, B. G., Hendrich, M. P., Surerus, K. K., Andersson, K. K., Froland, W. A., Libscomb, J. D., and Münck, E. (1993) Mössbauer, EPR, and Endor Studies of the Hydroxylase and Reductase Components of Methane Monooxygenase from Methylosinus trichosporiumOB3b. J. Am. Chem. Soc., 115, 3688–3701.

    CAS  Google Scholar 

  • Fox, B. G., Liu, Y., Dege, J. E., and Lipscomb, J. D. (1991) Complex Formation Between the Protein Components of Methane Monooxygenase from Methylosinus trichosporiumOB3B. Identification of Sites of Component Interaction. J. Biol. Chem., 266, 540–550.

    CAS  Google Scholar 

  • Fox, B. G., Surerus, K. K., Münck, E., and Lipscomb, J. D. (1988) Evidence for a μ-Oxo-bridged Binuclear Iron Cluster in the Hydroxylase Component of Methane Monooxygenase. Mössbauer and EPR Studies. J. Biol. Chem., 263, 10553–10556.

    CAS  Google Scholar 

  • Fujisawa, H., Uyeda, M., Kojima, Y., Nozaki, M., and Hayaishi, O. (1972) Protocatechuate 3,4-Dioxygenase. II. Electron Spin Resonance and Spectral Studies on Interaction of Substrate and Enzyme. J. Biol. Chem., 247, 4414–4421.

    CAS  Google Scholar 

  • Fujishima, Y., Schofield, C. J., Baldwin, J. E., Charnock, J. M., and Garner, C. D. (1991) Recent Physical and Mechanistic Studies on Isopenicillin N Synthase. J. Inorg. Biochem., 43, 564.

    Google Scholar 

  • Garbett, K., Darnall, D. W., Klotz, I. M., and Williams, R. J. P. (1969) Spectroscopy and Structure of Hemerythrin. Arch. Biochem. Biophys., 103, 419–434.

    Google Scholar 

  • Gassner, G. T., Ballou, D. P., Landrum, G. A., and Whittaker, J. W. (1993) Magnetic Circular Dichroism Studies on the Mononuclear Ferrous Active Site of Phthalate Dioxygenase from Pseudomonas cepaciaShow a Change of Ligation State on Substrate Binding. Biochemistry, 32, 4820–4825.

    CAS  Google Scholar 

  • Gibson, D. T. (Ed.) (1984) Microbial Degradation of Organic Molecules, Marcel Dekker, New York.

    Google Scholar 

  • Groves, J. T. (1985) Key Elements of the Chemistry of Cytochrome P-450. J. Chem. Ed., 62, 928–931.

    CAS  Google Scholar 

  • Günzler, V., Majamoa, K., Hanauski-Abel, H. M., and Kivirikko, K. I. (1986) Catalytically Active Ferrous Ions Are Not Released from Prolyl 4-Hydroxylase Under Turnover Conditions. Biochim. Biophys. Acta, 873, 38–44.

    Google Scholar 

  • Gurbiel, R. J., Ohnishi, T., Robertson, D. E., Daldal, F., and Hoffman, B. M. (1991) Q-band ENDOR Spectra of the Rieske Protein from Rhodobacter capulatusUbiquinol-cytochrome c Oxidoreductase Show Two Histidines Coordinated to the [2Fe-2S] Cluster. Biochemistry, 30, 11579–11584.

    CAS  Google Scholar 

  • Guroff, G., Daly, J. W., Jerina, D. M., Renson, J., Witkop, B., and Udenfriend, S. (1967) Hydroxylation-induced Migration: The NIH Shift. Science, 157, 1524–1530.

    CAS  Google Scholar 

  • Hartman, J. R., Rardin, R. L., Chaudhuri, P., Pohl, K., Wieghardt, K., Nuber, B., Weiss, J., Papaefthymiou, G. C., Frankel, R. B., and Lippard, S. J. (1987) Synthesis and Characterization of (μ-Hydroxo)bis(μ-acetato) diiron(II) and (μ-Oxo)bis(μ-acetato)diiron(III) 1,4,7-Trimethyl-1,4,7-triazacyclononane Complexes as Models for Binuclear Iron Centers in Biology; Properties of the Mixed Valence Diiron(II,III) Species. J. Am. Chem. Soc., 109, 7387–7396.

    CAS  Google Scholar 

  • Hayashi, Y., Suzuki, M., Uehara, A., Mizutani, Y., and Kitagawa, T. (1992) (μ-Alkoxo)diiron(II,II) Complexes of N, N, N’,N’-tetrakis(2-(6-methylpyridyl) methyl)-l,3-diaminopropane-2-olate and the Reversible Formation of the O2-Adducts. Chem. Lett., 91–94.

    Google Scholar 

  • Heimbrook, D. C., Carr, S. A., Mentzer, M. A., Long, E. C., and Hecht, S. M. (1987) Mechanism of Oxygenation of cis-Stilbene by Iron Bleomycin. Inorg. Chem., 26, 3835–3836.

    CAS  Google Scholar 

  • Hendrich, M. P., Münck, E., Fox, B. G., and Lipscomb, J. K. (1990) Integerspin EPR Studies of the Fully Reduced Methane Monooxygenase Hydroxylase Component. J. Am. Chem. Soc., 112, 5861–5865.

    CAS  Google Scholar 

  • Hendrich, M. P., Pearce, L. L., Que, L., Jr., Chasteen, N. D., and Day, E. P. (1991) Multifield Saturation Magnetization and Multifrequency EPR Measurements of Deoxyhemerythrin Azide. A Unified Picture. J. Am. Chem. Soc., 113, 3039–3044.

    CAS  Google Scholar 

  • Holmes, M. A., and Stenkamp, R. E. (1991) Structures of Met and Azidomet Hemerythrin at 1.66Å Resolution. J. Mol. Biol., 220, 723–737.

    CAS  Google Scholar 

  • Holmes, M. A., Trong, I. L., Turley, S., Sieker, L. C., and Stenkamp, R. E. (1991) Structures of Deoxy and Oxy Hemerythrin at 2.0 Å Resolution. J. Mol. Biol., 218, 583–593.

    CAS  Google Scholar 

  • Jang, H. G., Cox, D. D., and Que, L., Jr. (1991) A Highly Reactive Functional Model for the Catechol Dioxygenases. Structure and Properties of [Fe(TPA)DBC]BPh4. J. Am. Chem. Soc., 13, 9200–9204.

    Google Scholar 

  • Kitajima, N., Fukui, H., Moro-oka Y., Mizutani, Y., and Kitagawa, T. (1990) Synthetic Model for Dioxygen Binding Sites of Non-heme Iron Proteins. X-ray Structure of Fe(OBz)(MeCN)(HB(3,5-iPr2pz)3) and Resonance Raman Evidence for Reversible Formation of a Peroxo Adduct. J. Am. Chem. Soc., 112, 6402–6403.

    CAS  Google Scholar 

  • Kurtz, D. M., Jr. (1990) Oxo-and Hydroxo-bridged Diiron Complexes: A Chemical Perspective on a Biological Unit. Chem. Rev., 90, 585–606.

    CAS  Google Scholar 

  • Larsson, A., and Sjöberg, B.-M. (1986) Identification of the Stable Free Radical Tyrosine Residue in Ribonucleotide Reductase. EMBO J., 5, 2037–2040.

    CAS  Google Scholar 

  • Lauffer, R. B., and Que, L., Jr. (1982) 1H NMR and 2H NMR Studies of the Catechol Dioxygenases. J. Am. Chem. Soc., 104, 7324–7325.

    CAS  Google Scholar 

  • Lazarus, R. A., DeBrosse, C. W., and BenkoviC., S. J. (1982) Phenylalanine Hydroxylase: Structural Determination of the Tetrahydropterin Intermediates by 13C NMR Spectroscopy. J. Am. Chem. Soc., 104, 6869–6871.

    CAS  Google Scholar 

  • Lee, S.-K., Fox, B. G., Froland, W. A., Lipscomb, J. D., and Münck, E. (1993a). A Transient Intermediate of the Methane Monooxygenase Catalytic Cycle Containing an FeIVFeIV Cluster. J. Am. Chem. Soc., 115, 6450–6451.

    CAS  Google Scholar 

  • Lee, S.-K., Nesheim, J. C., and Lipscomb, J. D. (1993b). Transient Intermediates of the Methane Monooxygenase Catalytic Cycle. J. Biol. Chem., 268, 21569–21577.

    CAS  Google Scholar 

  • Leising, R. A., Brennan, B. A., Que, L., Jr., Fox, B. G., and Münck, E. (1991a) Models for Non-heme Iron Oxygenases: A High-valent Iron-oxo Intermediate. J. Am. Chem. Soc., 113, 3988–3990.

    CAS  Google Scholar 

  • Leising, R. A., Zang, Y., and Que L.,Jr. (1991b) Oxidative Ligand Transfer to Alkanes: A Model for Iron-mediated C—X Bond Formation in β-Lactam Antibiotic Biosynthesis. J. Am. Chem. Soc., 113, 8555–8557.

    CAS  Google Scholar 

  • Leising, R. A., Kim, J., Perez, M. A., and Que, L., Jr. (1993). Alkane Functionalization at (μ-Oxo)diiron(III) Centers. J. Am. Chem. Soc., 115, 9524–9530.

    CAS  Google Scholar 

  • Lindstedt, S., and Rundgren, M. (1982) Blue Color, Metal Content, and Substrate Binding in 4-Hydroxyphenylpyruvate Dioxygenase from Pseudomonassp. Strain P. J. 874. J. Biol. Chem., 257, 11922–11931.

    CAS  Google Scholar 

  • Ling, J., Sahlin, M. et al. (1994). Dioxygen is the Source of the μ-Oxo Bridge in Iron Ribonucleotide Reductase. J. Biol. Chem., 269, 5595–5601.

    CAS  Google Scholar 

  • Lipscomb, J. D., and Orville, A. M. (1992) Mechanistic Aspects of Dihydro-xybenzoate Dioxygenases. Metal Ions Biol. Syst., 28, 243–298.

    CAS  Google Scholar 

  • Liu, K. E., Wang, D., Huynh, B. H., Edmondson, D. E., Salifoglou, A., and Lippard, S. J. (1994). Spectroscopic Detection of Intermediates in the Reaction of Dioxygen with the Reduced Methane Monooxygenase Hydroxylase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc., 116, 7465–7466.

    CAS  Google Scholar 

  • Lynch, J. B., Juarez-Garcia, C., Münck, E., and Que, L., Jr. (1989) Mössbauer and EPR Studies of the Binuclear Iron Center in Ribonucleotide Reductase from E. coli.A New Iron-to-Protein Stoichiometry. J. Biol. Chem., 264, 8091–8096.

    CAS  Google Scholar 

  • Mabrouk, P. A., Orville, A. M., Lipscomb, J. D., and Solomon, E. I. (1991) Variable-temperature Variable-field Magnetic Circular Dichroism Studies of the Fe(II) Active Site in Metapyrocatechase: Implications for the Molecular Mechanism of Extradiol Dioxygenases. J. Am. Chem. Soc., 113, 4053–4061.

    CAS  Google Scholar 

  • Maroney, M. J., Kurtz, D. M., Jr., Nocek, J. M., Pearce, L. L., and Que, L., Jr. (1986)1 Hnmr Probes of the Binuclear Iron Cluster in Hemerythrin. J. Am. Chem. Soc., 108, 6871–6879.

    CAS  Google Scholar 

  • McCall, G. H., Rabow, L. E., Ashley, G. W., Wu, S. H., Kozarich, J. W., and Stubbe, J. (1992) New Insights into the Mechanism of Base Propenal Formation during Bleomycin-Mediated DNA Degradation. J. Am. Chem. Soc., 114, 4958–4967.

    Google Scholar 

  • McCandlish, E., Miksztal, A. R., Nappa, M., Sprenger, A. G., Valentine, S. J., Stong, J. D., and Spiro, T. G. (1980) Reactions of Superoxide with Iron Porphyrins in Aprotic Solvents. A High Spin Ferric Porphyrin Peroxo Complex. J. Am. Chem. Soc., 102, 4268–4271.

    CAS  Google Scholar 

  • McCormick, J. M., Reem, R. C., Foroughi, J., Bollinger, J. M., Jensen, G. M., Stephens, P. J., Stubbe, J., and Solomon, E. I. (1991) Excited State Spectral Features of the Radical Reduced, Native and Fully Reduced Forms of the Coupled Binuclear Non-heme Iron Center in Ribonucleotide Reductase: Active Site Differences Relative to Hemerythrin. New J. Chem., 15, 439–444.

    CAS  Google Scholar 

  • McMurry, T. J., and Groves, J. T. (1986) Metalloporphyrin Models for Cytochrome P-450, in Cytochrome P-450. Structure, Mechanism, and Biochemistry (P. R. Ortiz de Montellano, Ed.), Plenum Press, New York, pp. 1–

    Google Scholar 

  • Ménage, S., Brennan, B. A., Juarez-Garcia, C., Münck, E., and Que, L., Jr. (1990) Models for Iron-oxo Proteins: Dioxygen Binding to a Diferrous Complex. J. Am. Chem. Soc., 112, 6423–6425.

    Google Scholar 

  • Ménage, S., and Que, L., Jr. (1991) (μ-Oxo)(μ-carboxylato)diiron(III) Complexes. Effects of the Terminal Ligands. New. J. Chem., 15, 431–438.

    Google Scholar 

  • Ménage, S., Zang, Y., Hendrich, M. P., and Que, L., Jr. (1992) Structure and Reactivity of a Bis(μ-acetato-O,O’)diiron(II) Complex, [Fe2 (O2CCH3)2 (TPA)2](BPh4)2. A Model for the Diferrous Core of Ribonucleotide Reductase. J. Am. Chem. Soc., 114, 7786–7792.

    Google Scholar 

  • Ming, L.-J., Que, L., Jr., Kriauciunas, A., Frolik, C. A., and Chen, V. J. (1990) Coordination Chemistry of the Metal Binding Site of Isopenicillin N Synthase. Inorg. Chem., 29, 1111–1112.

    CAS  Google Scholar 

  • Ming, L.-J., Que, L., Jr., Kriauciunas, A., Frolik, C. A., and Chen, V. J. (1991) NMR Studies of the Active Site of Isopenicillin N Synthase, a Nonheme Iron(II) Enzyme. Biochemistry, 30, 11653–11659.

    CAS  Google Scholar 

  • Murugesan, N., and Hecht, S. M. (1985) Bleomycin as an Oxene Transferase. Catalytic Oxygen Transfer to Olefins. J. Am. Chem. Soc., 107 493–500.

    CAS  Google Scholar 

  • Natrajan, A., Hecht, S. M., van der Matrel, G. A., and van Boom, J. H. (1990) Activation of Fe(III) · Bleomycin by 10-Hydroperoxy-8,12-octa-decadienoic Acid. J. Am. Chem. Soc., 112, 4532–4538.

    CAS  Google Scholar 

  • Nordlund, P., Sjöberg, B.-M., and Eklund, H. (1990) Three-dimensional Structure of the Free Radical Protein of Ribonucleotide Reductase. Nature, 345, 393–398.

    Google Scholar 

  • Norman, R. E., Holz, R. C., Menage, S., O’Connor, C. J., and Zhang, J. H., Que, L., Jr. (1990a) Structures and Properties of Dibridged (μ-Oxo) diiron Complexes. Effects of the Fe-O-Fe Angle. Inorg. Chem., 29, 4629–4637.

    CAS  Google Scholar 

  • Norman, R. E., Yan, S., Que, L., Jr., Sanders-Loehr, J., Backes, G., Ling, J., Zhang, J. H., and O’Connor, C. J. (1990b) (μ-Oxo)(μ-carboxylato)-diiron(III) Complexes with Distinct Iron Sites. Consequences of the Inequivalence and Its Relevance to Dinuclear Iron-oxo Proteins. J. Am. Chem. Soc., 112, 1554–1562.

    CAS  Google Scholar 

  • Nozaki, M. (1974) Nonheme Iron Dioxygenases, in Molecular Mechanisms of Oxygen Activation (O. Hayaishi, Ed.), Academic Press, New York, pp. 135–165.

    Google Scholar 

  • Ohlendorf, D. H., Lipscomb, J. D., and Weber, P. C. (1988) Structure and Assembly of Protocatechuate 3,4-Dioxygenase. Nature (London), 336, 403–405.

    CAS  Google Scholar 

  • Okamura, M. Y., Klotz, I. M., Johnson, C. E., Winter, M. R. C., and Williams, R. J. P. (1969) The State of Iron in Hemerythrin. A Mössbauer Study. Biochemistry, 8, 1951–1958.

    CAS  Google Scholar 

  • Oppenheimer, N. J., Rodriguez, L. O., and Hecht, S. M. (1979) Structural Studies of the “Active Complex”’ of Bleomycin: Assignment of Ligands to the Ferrous Ion in a Ferrous-Bleomycin-Carbon Monoxide Complex. Proc. Natl. Acad. Sci. U.S.A., 76, 5616–5620.

    CAS  Google Scholar 

  • Ormö, M., deMaré, F., Regnström, K., Aberg, A., Sahlin, M., Ling, J., Loehr, T., Sanders-Loehr, J., and Sjöberg, B.-M. (1992) Engineering of the Iron Site in Ribonucleotide Reductase to a Self-hydroxylating Monooxygenase. J. Biol. Chem., 267, 8711–8714.

    Google Scholar 

  • Ortiz de Montellano, P. R. (Ed.) (1986) Cytochrome P-450. Structure, Mechanism and Biochemistry, Plenum Press, New York.

    Google Scholar 

  • Orville, A. M., and Lipscomb, J. D. (1989) Binding of Isotopically Labeled Substrates, Inhibitors, and Cyanide by Protocatechuate 3,4-Dioxygenase. J. Biol. Chem., 264, 8791–8801.

    CAS  Google Scholar 

  • Padbury, G., Sligar, S. G., Lateque, R., and Marnet, L. J. (1988) Ferric Bleomycin Catalyzed Reduction of 10-Hydroperoxy-8,12-octadecadienoic Acid: Evidence for Homolytic O—O Bond Scission. Biochemistry, 27, 7846–7852.

    CAS  Google Scholar 

  • Pascal, R. A., Jr., Oliver, M. A., and Chen, Y.-C. J. (1985) Alternate Substrates and Inhibitors of Bacterial 4-Hydroxophenylpyruvate Dioxygenase. Biochemistry, 24, 3158–3165.

    CAS  Google Scholar 

  • Petersson, L., Gräslund, A., Ehrenberg, A., Sjöberg, B.-M., and Reichard, P. (1980) The Iron Center in Ribonucleotide Reductase from E. coli. J. Biol Chem., 255, 6706–6712.

    CAS  Google Scholar 

  • Pyrz, J. W., Roe, A. L., Stern, L. J., and Que, L., Jr. (1985) Model Studies of Iron-tyrosinate Proteins. J. Am. Chem. Soc., 107, 614–620.

    CAS  Google Scholar 

  • Que, L., Jr. (1989) The Catechol Dioxygenases, in Iron Carriers and Iron Proteins (T. M. Loehr, Ed.), VCH, New York, pp. 467–524.

    Google Scholar 

  • Que, L., Jr., and Epstein, R. M. (1981) Resonance Raman Studies of Protocatechuate 3,4-Dioxygenase-Inhibitor Complexes. Biochemistry, 20, 2545.

    CAS  Google Scholar 

  • Que, L., Jr., and Heistand, R. H., II. (1979) Resonance Raman Studies of Pyrocatechase. J. Am. Chem. Soc., 101, 2219.

    CAS  Google Scholar 

  • Que, L., Jr., Heistand, R. H., II, Mayer, R., and Roe, A. L. (1980) Resonance Raman Studies of Pyrocatechase-Inhibitor Complexes. Biochemistry, 19, 2258.

    Google Scholar 

  • Que, L., Jr., Kolanczyk, R. C., and White, L. S. (1987) Functional Models for Catechol 1,2-Dioxygenase. Structure, Reactivity, and Mechanism. J. Am. Chem. Soc., 109, 5373–5380.

    CAS  Google Scholar 

  • Que, L., Jr., Lipscomb, J. D., Münck, E., and Wood, J. M. (1977) Protocatechuate 3,4-Dioxygenase: Inhibitor Studies and Mechanistic Implications. Biochim. Biophys. Acta, 485, 60–74.

    CAS  Google Scholar 

  • Que, L., Jr., Lipscomb, J. D., Zimmermann, R., Münck, E., Orme-Johnson, N. R., and Orme-Johnson, W. H. (1976) EPR and Mössbauer Studies of Protocatechuate 3,4-Dioxygenase from Pseudomonas aeruginosa. Biochim. Biophys. Acta, 452, 320–334.

    CAS  Google Scholar 

  • Que, L., Jr., and True, A. E. (1990) Dinuclear Iron-and Manganese-oxo Sites in Biology. Prog. Inorg. Chem., 38, 97–200.

    CAS  Google Scholar 

  • Randall, C. R., Zang, Y., True, A. E., Que, L., Jr., Charnock, J. M., Garner, C. D., Fujishima, Y., Schofield, C. J., and Baldwin, J. E. (1993) X-ray Absorption Studies of the Ferrous Active Site of Isopenicillin N Synthase and Related Model Complexes. Biochemistry, 32, 6664–6673.

    CAS  Google Scholar 

  • Rardin, R. L., Tolman, W. B., and Lippard, S. J. (1991) Monodentate Carboxylate Complexes and the Carboxylate Shift: Implications for Polymetalloprotein Structure and Function. New J. Chem., 15, 417–430.

    CAS  Google Scholar 

  • Ravi, N., J. M. Bollinger J., Huynh, B. H., Edmonson, D. E. and Stubbe, J. (1994). Mechanism of Assembly of the Tyrosyl Radical-Diiron(III) Cofactor of E. coli Ribonucleotide Reductase. 1. Mössbauer Characterization of the Diferric Radical Precursor. J. Am. Chem. Soc., 116, 8007–8014.

    CAS  Google Scholar 

  • Reem, R. C., McCormick, J. M., Richardson, D. E., Devlin, F. J., Stephens, P. J., Musselman, R. L., and Solomon, E. I. (1989) Spectroscopic Studies of the Coupled Binuclear Ferric Active Site in Methemerythrins and Oxyhemerythrin: The Electronic Structure of Each Iron Center and the Iron-oxo and Iron-Peroxide Bonds. J. Am. Chem. Soc., 111, 4688–4704.

    CAS  Google Scholar 

  • Reem, R. C., and Solomon, E. I. (1987) Spectroscopic Studies of the Binuclear Ferrous Active Site of Deoxyhemerythrin: Coordination Number and Probable Bridging Ligands for the Native and Ligand Bound Forms. J. Am. Chem. Soc., 109, 1216–1226.

    CAS  Google Scholar 

  • Reichard, P., and Ehrenberg, A. (1983) Ribonucleotide Reductase-A Radical Enzyme. Science (Washington, D.C.),221, 514–519.

    CAS  Google Scholar 

  • Rosenzweig, A. C., Frederick, C. A., Lippard, S. J., and Nordlund, P. (1993) Crystal Structure of a Bacterical Non-haem Iron Hydroxylase that Catalyses the Biological Oxidation of Methane. Nature, 366, 537–543.

    CAS  Google Scholar 

  • Rosenzweig, A. C., and Lippard, S. J. (1994) Determining the Structure of a Hydroxylase Enzyme That Catalyzes the Conversion of Methane to Methanol in Methanotrophic Bacteria. Accts. Chem. Res., 27, 229–236.

    CAS  Google Scholar 

  • Sahlin, M., Gräslund, A., Petersson, L., Ehrenberg, A., and Sjöberg, B.-M. (1989) Reduced Forms of the Iron-containing Small Subunit of Ribonucleotide Reductase from Escherichia coli. Biochemistry, 28, 2618–2625.

    CAS  Google Scholar 

  • Sahlin, M., Sjöberg, B.-M., Backes, G., Loehr, T. M., and Sanders-Loehr, J. (1990) Activation of the Iron-containing B2 Protein of Ribonucleotide Reductase by Hydrogen Peroxide. Biochem. Biophys. Res. Commun., 167, 813–818.

    CAS  Google Scholar 

  • Sam, J. W., Tang, X.-J., and Peisach, J. (1994) Electrospray Mass Spectrometry of Iron Bleomycin: Demonstration that Activated Bleomycin is a Ferric Peroxide Complex. J. Am. Chem. Soc., 116, 5250–5256.

    CAS  Google Scholar 

  • Sanders-Loehr, J. (1989) Binuclear Iron Proteins, in Iron Carriers and Iron Proteins (T. M. Loehr, Ed.), VCH, New York, pp. 373–466.

    Google Scholar 

  • Sanders-Loehr, J., Loehr, T. M., Mauk, A. G., and Gray, H. B. (1980) An Electronic Spectroscopic Study of Iron Coordination in Hemerythrin. J. Am. Chem. Soc., 102, 6992–6996.

    Google Scholar 

  • Sanders-Loehr, J., Wheeler, W. D., Shiemke, A. K., Averill, B. A., and Loehr, T. M. (1989) Electronic and Raman Spectroscopic Properties of Oxo-bridged Dinuclear Iron Centers in Proteins and Model Compounds. J. Am. Chem. Soc., 111, 8084–8093.

    CAS  Google Scholar 

  • Scarrow, R. C., Maroney, M. J., Palmer, S. M., Roe, A. L., Que, L., Jr., Salowe, S. P., and Stubbe, J. (1987) EXAFS Studies of Binuclear Iron Proteins: Hemerythrin and Ribonucleotide Reductase. J. Am. Chem. Soc., 109, 7857–7864.

    CAS  Google Scholar 

  • Scott, R. A., Wang, S., Eidsness, M. K., Kriauciunas, A., Frolik, C. A., and Chen, V. J. (1992) X-ray Absorption Spectroscopic Studies of the High-spin Iron(II) Active Site of Isopenicillin N Synthase: Evidence for Fe-S Interaction in the Enzyme-Substrate Complex. Biochemistry, 31, 4596–4601.

    CAS  Google Scholar 

  • Sheriff, S., Henrickson, W. A., and Smith, J. L. (1987) Structure of Myohemerythrin in the Azidomet State at 1.7/1.3Å Resolution. J. Mol. Biol., 197, 273–296.

    CAS  Google Scholar 

  • Shiemke, A. J., Loehr, T. M., and Sanders-Loehr, J. (1984) Resonance Raman Study of the μ-Oxo-bridged Binuclear Iron Center in Oxyhemerythrin. J. Am. Chem. Soc., 106, 4951–4956.

    CAS  Google Scholar 

  • Shiemke, A. K., Loehr, T. M., and Sanders-Loehr, J. (1986) Resonance Raman Study of Oxyhemerythrin and Hydroxomethemerythrin. Evidence for Hydrogen Bonding of Ligands to the Fe-O-Fe Center. J. Am. Chem. Soc., 108, 2437–2443.

    CAS  Google Scholar 

  • Siu, C.-T., Orville, A. M., Lipscomb, J. D., Ohlendorf, D. H., and Que L., Jr. (1992) Resonance Raman Studies of the Protocatechuate 3,4-Dioxygenase from Brevibacterium fuscum. Biochemistry, 31, 10443–10448.

    CAS  Google Scholar 

  • Sjöberg, B.-M., and Gräslund, A. (1983) Ribonucleotide Reductase. Adv. Inorg. Biochem., 5, 87–110.

    Google Scholar 

  • Sjöberg, B.-M., Loehr, T. M., and Sanders-Loehr, J. (1982) Raman Spectral Evidence for μ-Oxo Bridge in the Binuclear Iron Center of Ribonucleotide Reductase. Biochemistry, 21, 96–102.

    Google Scholar 

  • Snyder, B. S., Patterson, G. S., Abrahamson, A. J., and Holm, R. H. (1989) Binuclear Iron System Ferromagnetic in Three Oxidation States: Synthesis, Structures, and Electronic Aspects of Molecular with a Fe2 (OR)2Bridge Unit Containing Fe(III,III), Fe(III,II), and Fe(II,II). J. Am. Chem. Soc., 111, 5214–5223.

    CAS  Google Scholar 

  • Stenflo, J., Holme, E., Lindstedt, S., Chandramouli, N., Huang, L. H. T., Tam, J. P., and Merrifield, R. B. (1989) Hydroxylation of Aspartic Acid in Domains Homologous to the Epidermal Growth Factor Precursor. Precursor is Catalyzed by a 2-Oxo Glutarate-dependent Dioxygenase. Proc. Natl Acad. Sci. U.S.A., 86, 444–447.

    CAS  Google Scholar 

  • Stenkamp, R. E., Sieker, L. C., Jensen, L. H., McCallum, J. D., and Sanders-Loehr, J. (1985) Active Site Structures of Deoxyhemerythrin and Oxyhemerythrin. Proc. Natl. Acad. Sci. U.S.A., 82, 713–716.

    CAS  Google Scholar 

  • Stoddard, B. L., Howell, P. L., Ringe, D., and Petsko, G. N. (1990) The 2.1-Å Resolution Structure of Iron Superoxide Dismutase from Pseudomonas ovalis. Biochemistry, 1990, 8885–8893.

    Google Scholar 

  • Stubbe, J. (1990) Ribonucleotide Reductases: Amazing and Confusing. J. Biol. Chem., 265, 5329–5332.

    CAS  Google Scholar 

  • Stubbe, J., and Kozarich, J. W. (1987) Mechanisms of Bleomycin-induced DNA Degradation. Chem. Rev., 87, 1107–1136.

    CAS  Google Scholar 

  • Thelander, L. (1973) Physicochemical Characterization of Ribonucleoside Diphosphate Reductase from E. coli. J. Biol. Chem., 248, 4591–4601.

    CAS  Google Scholar 

  • Thelander, L. (1974) Reaction Mechanism of Ribonucleoside Diphosphate Reductase from Escherichia coli. J. Biol. Chem., 249, 4858–4862.

    CAS  Google Scholar 

  • Tolman, W. B., Bino, A., and Lippard, S. J. (1989) Self-assembly and Dioxygen Reactivity of an Asymmetric, Triply Bridged Diiron(II) Complex with Imidazole Ligands and an Open Coordination Site. J. Am. Chem. Soc., 111, 8522–8523.

    CAS  Google Scholar 

  • Tolman, W. B., Liu, S., Bentsen, J. G., and Lippard, S. J. (1991) Models of the Reduced Forms of Polyiron-oxo Proteins: An Asymmetric, Triply Carboxylate Bridged Diiron(II) Complex and Its Reaction with Dioxygen. J. Am. Chem. Soc., 113, 152–164.

    CAS  Google Scholar 

  • Townsend, C. A., and Basak, A. (1991) Experiments and Speculations on the Role of Oxidative Cyclization Chemistry in Natural Product Biosynthesis. Tetrahedron, 47, 2591–2602.

    CAS  Google Scholar 

  • True, A. E., Orville, A. M., Pearce, L. L., Lipscomb, J. C, and Que, L., Jr. (1990) An Exafs Study of the Interaction of Substrate with the Ferric Active Site of Protocatechuate 3,4-Dioxygenase. Biochemistry, 29, 10847–10854.

    CAS  Google Scholar 

  • Twilfer, H., Bernhardt, F.-H., and Gersonde, K. (1985) Dioxygen-activating Iron Center in Putidamonooxin. Electron Spin Resonance Investigation of the Nitrosylated Putidamonooxin. Eur. J. Biochem., 147, 171–176.

    CAS  Google Scholar 

  • Von Döbeln, U., and Reichard, P. (1976) Binding of Substrates to Escherichia coliRibonucleotide Reductase. J. Biol. Chem., 251, 3616–3622.

    Google Scholar 

  • Wallick, D. E., Bloom, L. M., Gaffney, B. J., and Benkovic, S. J. (1984) Reductive Activation of Phenylalanine Hydroxylase and Its Effect on the Redox State of the Non-heme Iron. Biochemistry, 23, 1295–1302.

    CAS  Google Scholar 

  • Walsh, T. A., Ballou, D. P., Mayer, R., and Que, L., Jr. (1983) Rapid Reaction Studies on the Oxygenation Reactions of Catechol Dioxygenases. J. Biol. Chem., 258, 14422–14427.

    CAS  Google Scholar 

  • Wende, P., Pfleger, K., and Bernhardt, F.-H. (1982) Dioxygen Activation by Putidamonooxin: Substrate-modulated Reaction of Activated Dioxygen. Biochem. Biophys. Res. Commun., 104, 527–532.

    CAS  Google Scholar 

  • Whitaker, J. W., and Lipscomb, J. D. (1984) 17O-water and Cyanide Ligation by the Active Site Iron of Protocatechuate 3,4-Dioxygenase. Evidence for Displaceable Ligands in the Native Enzyme and in Complexes with Inhibitors or Transition State Analogs. J. Biol. Chem., 259, 4487–4495.

    Google Scholar 

  • Whitaker, J. W., Lipscomb, J. D., Kent, T. A., and Münck, E. (1984) Brevibacterium fuscumProtocatechuate 3,4-Dioxygenase. Purification, Crystallization, and Characterization. J. Biol. Chem., 259, 4466–4475.

    Google Scholar 

  • Woodland, M. P., and Dalton, H. (1984) Purification and Characterization of Component A of the Methane Monooxygenase from Methylococcus caγsulatus (Bath). J. Biol. Chem., 259, 53–59.

    CAS  Google Scholar 

  • Zhang, K., Stern, E. A., Ellis, F., Sanders-Loehr, J., and Shiemke, A. K. (1988) The Active Site of Hemerythrin as Determined by X-ray Absorption Fine Structure. Biochemistry, 27, 7470–7479.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Que, L. (1995). Oxygen Activation at Nonheme Iron Centers. In: Valentine, J.S., Foote, C.S., Greenberg, A., Liebman, J.F. (eds) Active Oxygen in Biochemistry. Structure Energetics and Reactivity in Chemistry Series (SEARCH series), vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0609-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0609-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7514-0372-5

  • Online ISBN: 978-94-011-0609-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics