Skip to main content

Oxygen Activation by Flavins and Pterins

  • Chapter
Book cover Active Oxygen in Biochemistry

Abstract

As discussed in other chapters in this volume, the high reduction potential of O2 makes it thermodynamically an excellent oxidizing agent for most biochemicals. However, the activation energy for these reactions is rather high, and O2 is kinetically unreactive without the intervention of a catalyst. Furthermore, the products generated by the uncontrolled reduction of O2 are often toxic. Such reductions usually produce highly reactive radicals, which react nonspecifically with the many reducing cellular compounds. Thus, the reactions of O2 must be strictly controlled. The task of oxygen-utilizing enzymes, then, is to accelerate the reaction of O2 at the enzyme active site and control the fate of the activated oxygen intermediate so that only a specific organic compound is oxidized. Enzymes that activate O2 generally require the participation of either metals or organic cofactors. Metals are discussed in other chapters. The most widely occurring and best-studied organic cofactors that activate O2 are the flavins, derivatives of vitamin B2 (riboflavin; FMN without the phosphate). The structures of the two most common flavins, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), are shown overleaf.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abita, J.-P., Parniak, M., and Kaufman, S. (1984) The Activation of Rat Liver Phenylalanine Hydroxylase by Limited Proteolysis, Lysolecithin, and Tocopherol Phosphate. Changes in Conformation and Catalytic Properties. J. Biol. Chem., 259, 14560–14566.

    CAS  Google Scholar 

  • Abu-Soud H., Mullins, L. S., Baldwin, T. O., and Raushel, F. M. (1992) Stopped-Flow Kinetic Analysis of the Bacterial Luciferase Reaction. Biochemistry, 31, 3807–3813.

    CAS  Google Scholar 

  • Ahrens, M., Macheroux, P., Eberhard, A., Ghisla, S., Branchaud, B., and Hastings, J. W. (1991) Boronic Acids as Mechanistic Probes for the Bacterial Luciferase Reaction. Photochem. Photobiol., 54, 295–299.

    CAS  Google Scholar 

  • Anderson, R. F. (1982) Flavin-Oxygen Complex Formed on the Reaction of Superoxide Ions with Flavosemiquinone Radicals, In Flavins and Flavoproteins (V. Massey and C. H. Williams, Eds.), Elsevier North-Holland, New York, pp. 278–283.

    Google Scholar 

  • Anderson, R. F., Patel, K. B., and Stratford, M. R. L. (1987) Absorption Spectra of Radicals of Substrates for p-Hydroxybenzoate Hydroxylase Following Electrophilic Attack of the OH Radical in the 3 Position. J. Biol. Chem., 262, 17475–17479.

    Google Scholar 

  • Anderson, R. F., Patel, K. B., and Vojnovic, B. (1991) Absorption Spectra of Radical Forms of 2,4-Dihydrobenzoic Acid, a Substrate for p-Hydroxy-benzoate Hydroxylase. J. Biol. Chem., 266, 13086–13090.

    CAS  Google Scholar 

  • Arunachalam, U., Massey, V., and Vaidyanathan, C. S. (1992) p-Hydroxyphenylacetate-3-hydroxylase: A Two-protein Component Enzyme. J. Biol. Chem., 267, 25848–25855.

    CAS  Google Scholar 

  • Ayling, J. E., and Bailey, S. W. (1990) Why Is the Cofactor for Tetrahydrobiopterin Dependent Enzymes not a Dihydroflavin?, in Biological Oxidation Systems (C. C. Reddy, G. A. Hamilton, and K. M. Madyastha, Eds.), Academic Press, San Diego, 1, pp. 221–236.

    Google Scholar 

  • Bailey, S. W., and Ayling, J. E. (1980) Cleavage of the 5-Amino Substituent of Pyrimidine Cofactors by Phenylalanine Hydroxylase. J. Biol. Chem., 255, 7774–7781.

    CAS  Google Scholar 

  • Bailey, S. W., Crow, J. P., and Ayling, J. E. (1991) The Cofactor Dependent Interaction of Molecular Oxygen with Phenylalanine Hydroxylase, in Flavins and Flavoproteins 1990 (B. Curti, S. Ronchi, and G. Zanetti, Eds.), Walter de Gruyter, New York, pp. 247–250.

    Google Scholar 

  • Bailey, S. W., Weintraub, S. T., Hamilton, S. M., and Ayling, J. E. (1982) Incorporation of Molecular Oxygen into Pyrimidine Cofactors by Phenylalanine Hydroxylase. J. Biol. Chem., 257, 8253–8260.

    CAS  Google Scholar 

  • Baldwin, T. O., and Ziegler, M. M. (1992) The Biochemistry and Molecular Biology of Bacterial Bioluminescence, in Chemistry and Biochemistry of Flavoenzymes (F. Müller, Ed.), CRC Press, Boca Raton, FL, III, pp. 467–530.

    Google Scholar 

  • Beaty, N. B., and Ballou, D. P. (1981a) The Reductive Half-reaction of Liver Microsomal FAD-containing Monooxygenase. J. Biol. Chem., 256, 4611–4618.

    CAS  Google Scholar 

  • Beaty, N. B., and Ballou, D. P. (1981b) The Oxidative Half-reaction of Liver Microsomal FAD-containing Monooxygenase. J. Biol. Chem., 256, 4619–4625.

    CAS  Google Scholar 

  • Benkovic, S. J., Bloom, L. M., Bollag, G., Dix, T. A., Gaffney, B. J., and Pember, S. (1986) The Mechanism of Action of Phenylalanine Hydroxylase. Ann. N.Y. Acad, Sci., 471, 226–232.

    CAS  Google Scholar 

  • Bloom, L. M., Benkovic, S. J., and Gaffney, B. J. (1986) Characterization of Phenylalanine Hydroxylase. Biochemistry, 25, 4204–4210.

    CAS  Google Scholar 

  • Brissette, P. (1990) Mechanisms of Two Flavoenzymes Involved in the Degradation of Vitamin B-6 in Bacteria. Ph.D. Thesis, University of Michigan.

    Google Scholar 

  • Britton, L. N. Brand, J. M., and Markovetz, A. J. (1974) Sources of Oxygen in the Conversion of 2-Tridecanone to Undecyl Acetate by Pseudomonas cepacia and Nocardia Sp. Biochim. Biophys. Acta, 369, 45–49.

    CAS  Google Scholar 

  • Bruice, T. C. (1984) Oxygen-Flavin Chemistry. Isr. J. Chem., 24, 54–61.

    CAS  Google Scholar 

  • Bruice, T. C, Noar, J. B., Ball, S. S., and Vekataram, U. V. (1983) Monoxygen Donation Potential of 4a-Hydroperoxyflavins as Compared with Those of a Percarboxylic Acid and Other Hydroperoxides. Monooxygen Donation to Olefin, Tertiary Amine, Alkyl Sulfide, and Iodide Ion. J. Am. Chem. Soc., 105, 2452–2463.

    CAS  Google Scholar 

  • Craine, J. E., Hall, E. S., and Kaufman, S. (1972) The Isolation and Characterization of Dihydropteridine Reductase from Sheep Liver. J. Biol. Chem., 247, 6082–6091.

    CAS  Google Scholar 

  • Davis, M. D., and Kaufman, S. (1989) Evidence for the Formation of the 4a-Carbinolamine During the Tyrosine-dependent Oxidation of Tetrahydrobiopterin by Rat Liver Phenylalanine Hydroxylase. J. Biol. Chem., 264, 8585–8596.

    CAS  Google Scholar 

  • Dix, T. A., and Benkovic, S. J. (1982) Mechanism of “Uncoupled” Tetrahydropterin Oxidation by Phenylalanine Hydroxylase. Biochemistry, 24, 5839–5846.

    Google Scholar 

  • Dix, T. A., and Benkovic, S. J. (1988) Mechanism of Oxygen Activation by Pteridine-dependent Monooxygenases. Acc. Chem. Res., 21, 101–107.

    CAS  Google Scholar 

  • Dix, T. A., Bollag, G., Domanico, P. L., and Benkovic, S. J. (1985) Phenylalanine Hydroxylase: Absolute Configuration and Source of Oxygen of the 4a-Hydroxypterin Species. Biochemistry, 24, 2955–2958.

    CAS  Google Scholar 

  • Dix, T. A., Kuhn, D. M., and Benkovic, S. J. (1987) Mechanism of Oxygen Activation by Tyrosine Hydroxylase. Biochemistry, 26, 3354–3361.

    CAS  Google Scholar 

  • Donoghue, N. A., Norris, D. B., and Trudgill, P. W. (1976) The Purification of Cyclohexanone Oxygenase from Nocardia globerulaCL1 and AcinetobacterNCIB 9871. Eur. J. Biochem., 63, 175–192.

    CAS  Google Scholar 

  • Eberlein, G., and Bruice, T. C. (1983) The Chemistry of a 1,5-Diblocked Flavin. 2. Proton and Electron Transfer Steps in the Reaction of Dihydro flavins with Oxygen. J. Am. Chem. Soc., 105, 6685–6697.

    CAS  Google Scholar 

  • Eberlein, G., Bruice, T. C., Lazarus, R. A., Henrie, R., and Benkovic, S. J. (1984) The Interconversion of the 5,6,7,8-Tetrahydro-, 7,8-Dihydro-, and Radical Forms of 6,6,7,7-Tetramethyldihydropterin. A Model for the Biopterin Center of Aromatic Amino Acid Mixed Function Oxidases. J. Am. Chem. Soc., 106, 7916–7924.

    CAS  Google Scholar 

  • Eckstein, J. W., Hastings, J. W., and Ghisla, S. (1993) Mechanism of Bacterial Bioluminescence: 4a,5-Dihydro?lavin Analogs as Models for Luciferase Hydroperoxide Intermediates and the Effects of Substituents at the 8-Position of Flavin on Luciferase Kinetics. Biochemistry, 32, 404–411.

    CAS  Google Scholar 

  • Engel, P. C. (1992) Acyl-coenzyme A Dehydrogenases, in Chemistry and Biochemistry of Flavoenzymes (F. Müller, Ed.), CRC Press, Boca Raton, FL, III, pp. 597–655.

    Google Scholar 

  • Entsch, B., and Ballou, D. P. (1989) Purification, Properties, and Oxygen Reactivity of p-Hydroxybenzoate Hydroxylase from Pseudomonas aeruginosa. Biochim. Biophys. Acta, 999, 313–322.

    CAS  Google Scholar 

  • Entsch, B., Ballou, D. P., and Massey, V. (1976) Flavin-oxygen Derivatives in Hydroxylation by p-Hydroxybenzoate Hydroxylase. J. Biol. Chem., 251, 2550–2563.

    CAS  Google Scholar 

  • Entsch, B., Massey, V., and Ballou, D. P. (1974) Intermediates in Flavoprotein Catalyzed Hydroxylations. Biochem. Biophys. Res. Commun., 57, 1018–1025.

    CAS  Google Scholar 

  • Entsch, B., Palfey, B. A., Ballou, D. P., and Massey, V. (1991) Catalytic Function of Tyrosine Residues in para-Hydroxybenzoate Hydroxylase as Determined by the Study of Site-directed Mutants. J. Biol. Chem., 266, 17341–17349.

    CAS  Google Scholar 

  • Fitzpatrick, F. P. (1991) Studies of the Rate-limiting Step in the Tyrosine Hydroxylase Reaction: Alternate Substrates, Solvent Isotope Effects, and Transition-state Analogues. Biochemistry, 30, 6386–6391.

    CAS  Google Scholar 

  • Fitzpatrick, P. F., Chlumsky, L. J., Daubner, S. C, and O’Malley, K. (1990) Expression of Rat Tyrosine Hydroxylase in Insect Tissue Culture Cells and Purificiation and Characterization of the Cloned Enzyme. J. Biol. Chem., 265, 2042–2047.

    CAS  Google Scholar 

  • Ghisla, S., Entsch, B., Massey, V., and Husain, M. (1977) On the Structure of Flavin-Oxygen Intermediates Involved in Enzymatic Reactions. Eur.J. Biochem., 76, 139–148.

    CAS  Google Scholar 

  • Ghisla, S., and Massey, V. (1991) L-Lactate Oxidase, in Chemistry and Biochemistry of Flavoenzymes (F. Müller, Ed.), CRC Press, Boca Raton, FL, II, pp. 243–289.

    Google Scholar 

  • Gibbs, B. S., Wojchowski, D., and Benkovic, S. J. (1993) Expression of Rat Liver Phenylalanine Hydroxylase in Insect Cells and Site-directed Mutagenesis of Putative Non-Heme Iron-binding Sites. J. Biol. Chem., 268, 8046–8052.

    CAS  Google Scholar 

  • Haavik, J., Døskeland, A. P., and Flatmark, T. (1986) Stereoselective Effects in the Interactions of Pterin Cofactors with Rat-liver Phenylalanine 4-Monooxygenase. Eur. J. Bioch., 160, 1–8.

    CAS  Google Scholar 

  • Hamilton, G. A. (1971) The Proton in Biological Redox Reactions. Progr. Bioorg. Chem., 1, 83–157.

    CAS  Google Scholar 

  • Hamilton, G. A. (1974) Chemical Models and Mechanisms for Oxygenases, in Molecular Mechanisms of Oxygen Activation (O. Hayaishi, Ed.), Academic Press, New York, pp. 405–451.

    Google Scholar 

  • Hastings, J. W., Balny, C., LePeuch, C., and Douzou, P. (1973) Spectral Properties of an Oxygenated Luciferase-Flavin Intermediate Isolated by Low-temperature Chromatography Proc. Natl. Acad. Sci. U.S.A., 70, 3468–3472.

    CAS  Google Scholar 

  • Hevel, J. M., and Marletta, M. A. (1992) Macrophage Nitric Oxide Synthase: Relationship Between Enzyme-Bound Tetrahydrobiopterin and Synthase Activity. Biochemistry, 31, 7160–7165.

    CAS  Google Scholar 

  • Jones, K. (1985) Nature of the 4a-Flavinhydroperoxide of Microsomal Flavincontaining Monooxygenase. Ph.D. Thesis, University of Michigan.

    Google Scholar 

  • Jones, K., and Ballou, D. P. (1984) The Nature of the 4a-Hydroxyplavin in the Mammalian Flavin Containing Monooxygenase, in Flavins and Flavo-proteins (R. C. Bray, P. C. Engel, and S. G. Mayhew, Eds.), Walter de Gruyter, New York, pp. 619–622.

    Google Scholar 

  • Jones, K. C., and Ballou, D. P. (1986) Reactions of the 4a-Hydroperoxide of Liver Microsomal Flavin-containing Monooxygenase with Nucleophilic and Electrophilic Substrates. J. Biol. Chem., 261, 2553–2559.

    CAS  Google Scholar 

  • Katagiri, M., and Itagaki, E. (1991) A Steroid Ketone Monooxygenase from Cylindrocarpon radicicola, in Chemistry and Biochemistry of Flavoenzymes (F. Müller, Ed.), CRC Press, Boca Raton, FL, II, pp. 101–108.

    Google Scholar 

  • Kaufman, S. (1975) Studies on the Mechanism of Phenylalanine Hydroxylase: Detection of an Intermediate in Chemistry and Biology of Pteridines (Pfleiderer W., Ed.), Walter de Gruyter, Berlin, pp. 291–304.

    Google Scholar 

  • Kaufman, S., and Mason, K. (1982) Spectificity of Amino Acids as Activators and Substrates for Phenylalanine Hydroxylase. J. Biol. Chem., 257, 14667–14678.

    CAS  Google Scholar 

  • Kemal, C, and Bruice, T. C. (1976) Simple Synthesis of a 4a-Hydroperoxy Adduct of a 1,5-Dihydroflavine: Preliminary Studies of a Model for Bacterial Luciferase. Proc. Natl. Acad. Sci. U.S.A., 73, 995–999.

    CAS  Google Scholar 

  • Kemal, C., Chan, T. W., and Bruice, T. C. (1977a) Reactions of 3O2 with Dihydroflavins. 1. N 3,5-Dimethyl-l,5-dihydrolumiflavin and 1,5-Dihydroisoalloxazines. J. Am. Chem. Soc., 99, 7272–7286.

    CAS  Google Scholar 

  • Kemal, C., Chan, T. W., and Bruice, T. C. (1977b) Chemiluminescent Reactions and Electrophilic Oxygen Donating Ability of 4a-Hydroperoxy flavins: General Synthetic Method for the Preparation of N 5-Alkyl-1,5-dihydroflavins. Proc. Natl. Acad. Sci. U.S.A., 74, 405–409.

    CAS  Google Scholar 

  • Kürfurst, M., Ghisla, S., and Hastings, J. W. (1984a) Characterization and Postulated Structure of the Primary Emitter in the Bacterial Luciferase Reaction Proc. Natl. Acad. Sci. U.S.A., 81, 2990–2994.

    Google Scholar 

  • Kurfürst, M., Hastings, J. W., Ghisla, S., and Macheroux, P. (1984b) Identification of the Luciferase-bound Flavin-4a-hydroxide as the Primary Emitter in the Bacterial Bioluminescence Reaction, in Flavins and Flavoproteins (R. C. Bray, P. C. Engel, and S. G. Mayhew, Eds.), Walter de Gruyter, New York, pp. 657–667.

    Google Scholar 

  • Latham, J., and Walsh, C. T. (1986) Bacterial Cyclohexanone Oxygenase. A Versatile Flavoprotein Oxygen Transfer Catalyst. Ann. N.Y. Acad. Sci., 471, 208–216.

    CAS  Google Scholar 

  • Lazarus, R. A., Benkovic, S. J., and Kaufman, S. (1983) Phenylalanine Hydroxylase Stimulator Protein is a 4a-Carbinolamine Dehydratase. J. Biol. Chem., 258, 10960–10962.

    CAS  Google Scholar 

  • Lazarus, R. A., DeBrosse, C. W., and Benkovic, S. J. (1982a) Phenylalanine Hydroxylase: Structural Determination of the Tetrahydropterin Intermediates by 13C NMR Spectroscopy. J. Am. Chem. Soc., 104, 6869–6871.

    CAS  Google Scholar 

  • Lazarus, R. A., DeBrosse, C. W., and Benkovic, S. J. (1982b) Structural Determination of Quinonoid Dihydropterins. J. Am. Chem. Soc., 104, 6871–6872.

    CAS  Google Scholar 

  • Lazarus, R. A., Dietrich, R. F., Wallick, D. E., and Benkovic, S. J. (1981) On the Mechanism of Action of Phenylalanine Hydroxylase. Biochemistry, 20, 6834–6841.

    CAS  Google Scholar 

  • Lederer, F. (1991) Flavocytochrome b 2, in Chemistry and Biochemistry of Flavoenzymes (F. Müller, Ed.), CRC Press, Boca Raton, FL, II, pp. 153–242.

    Google Scholar 

  • Lee, J., Wang, Y., and Gibson, B. G. (1991) Electronic Excitation Transfer in the Complex of Lumazine Protein with Bacterial Bioluminescence Intermediates. Biochemistry, 30, 6825–6835.

    CAS  Google Scholar 

  • Lindqvist, Y. (1992) The Structure and Mechanism of Spinach Glycolate Oxidase, in Chemistry and Biochemistry of Flavoenzymes (F. Müller, Ed.), CRC Press, Boca Raton, FL, III, pp. 367–387.

    Google Scholar 

  • Ludwig, M. L., and Luschinsky, C. L. (1992) Structure and Redox Properties of Clostridial Flavodoxins, in Chemistry and Biochemistry of Flavoenzymes (F. Müller, Ed.), CRC Press, Boca Raton, FL, III, pp. 427–466.

    Google Scholar 

  • Maeda-Yorita, K., and Massey, V. (1993) On the Reaction Mechanism of Phenol Hydroxylase. New Information Obtained by Correlation of Fluorescence and Absorbance Stopped Flow Studies. J. Biol. Chem., 266, 4134–4144.

    Google Scholar 

  • Makemsom, J. C, Hastings, J. W., and Quirke, M. E. (1992) Stabilization of Luciferase Intermediates by Fatty Amines, Amides, and Nitriles. Arch. Biochem. Biophys., 249, 361–366.

    Google Scholar 

  • Marota, J. J., and Shiman, R. (1984) Stoichiometric Reduction of Phenylalanine Hydroxylase by Its Cofactor: A Requirement for Enzymatic Activity. Biochemistry, 23, 1303–1311.

    CAS  Google Scholar 

  • Massey, V., Ghisla, S., and Moore, E. G. (1979) 8-MercaptofLavins as Active Site Probes of Flavoenzymes. J. Biol. Chem., 254, 9640–9650.

    CAS  Google Scholar 

  • Massey, V., Palmer, G., and Ballou, D. (1971) On the Reaction of Reduced Flavins and Flavoproteins with Molecular Oxygen, in Flavins and Flavoproteins (H. Kamin, Ed.), University Park Press, Baltimore, pp. 349–361.

    Google Scholar 

  • Massey, V., Palmer, G., and Ballou, D. (1973) On the Reaction of Reduced Flavins with Molecular Oxygen, in Oxidases and Related Redox Systems (T. E. King, H. S. Mason, and M. Morrison, Eds.), University Park Press, Baltimore, pp. 25–49.

    Google Scholar 

  • Massey, V., Schopfer, L. M., and Anderson, R. F. (1988) Structural Determinants of the Oxygen Reactivity of Different Classes of Flavoproteins, in Oxidases and Related Redox Systems (T. E. King, H. S. Mason, and M. Morrison, Eds.), Alan R. Liss, New York, pp. 147–166.

    Google Scholar 

  • Massey, V., Strickland, S., Mayhew, S. G., Howell, L. G., Engel, P. C., Matthews, R. G., Schuman, M., and Sullivan, P. A. (1969) The Production of Superoxide Anion Radicals in the Reaction of Reduced Flavins and Flavoproteins with Molecular Oxygen. Biochem. Biophys. Res. Commun., 36, 891–897.

    CAS  Google Scholar 

  • McCapra, F., and Hart, R. (1976) Oxidation of Dialkyl Sulphides by Bacterial Luciferase. J. Chem. Soc., Chem. Commun., 273–274.

    Google Scholar 

  • McMillan, K., Bredt, D. S., Hirsch, D. J., Snyder, S. H., Clark, J. E., and Masters, B. S. S. (1992) Cloned, Expressed Rat Cerebellar Nitric Oxide Synthase Contains Stoichiometric Amounts of Heme, Which Binds Carbon Monoxide. Proc. Natl. Acad. Sci. U.S.A., 89, 11141–11145.

    CAS  Google Scholar 

  • Merényi G., and Lind, J. (1991a) Chemistry of Peroxidic Tetrahedral Intermediates of Flavin. J. Am. Chem. Soc., 113, 3146–3153.

    Google Scholar 

  • Merényi, G., and Lind, J. (1991b) The Breakdown of C(4a)-flavin-peroxides into Flavin and a Hydroperoxide in Different Environments, in Flavins and Flavoproteins 1990 (B. Curti, S. Ronchi, and G. Zanetti, Eds.), Walter de Gruyter, New York, pp. 37–40.

    Google Scholar 

  • Merényi G., Lind, J., and Anderson, R. F. (1991) Spectral Characterization of 4-Carboxy-5,6-dihydro-2,4-cyclohexadienone, a Likely Component of Intermediate II in p-Hydroxy Benzoate Hydroxylase. J. Am. Chem. Soc., 113, 9371–9372.

    Google Scholar 

  • Müller, F. (1991a) Free Flavins: Synthesis, Chemical and Physical Properties, in Chemistry and Biochemistry of Flavoenzymes (F. Müller, Ed.), CRC Press, Boca Raton, FL, I, pp. 1–71.

    Google Scholar 

  • Müller, F. (1991b) Nuclear Magnetic Resonance Studies on Flavoproteins, in Chemistry and Biochemistry of Flavoenzymes (F. Müller, Ed.), CRC Press, Boca Raton, FL, III, pp. 557–595.

    Google Scholar 

  • Muto, S., and Bruice, T. C. (1982) Dioxygen Transfer from 4a-Hydro-peroxyflavin Anion. 4. Dioxygen Transfer to Phenolate Anion as a Means of Aromatic Hydroxylation. J. Am. Chem. Soc., 104, 2284–2290.

    CAS  Google Scholar 

  • Pember, S. O., Johnson, K. A., Villafranca, J. J., and Benkovic, S. J., (1989) Mechanistic Studies on Phenylalanine Hydroxylase from Chromobacterium violaceum. Evidence for the Formation of an Enzyme-Oxygen Complex. Biochemistry, 28, 2124–2130.

    CAS  Google Scholar 

  • Poulsen, L. L. (1991) The Multisubstrate FAD-containing Monooxygenase, in Chemistry and Biochemistry of Flavoenzymes (F. Müller, Ed.), CRC Press, Boca Raton, FL, II, pp. 87–100.

    Google Scholar 

  • Poulsen, L. L., and Ziegler, D. M. (1979) The Liver Microsomal FAD-containing Monooxygenase. Spectral Characterization and Kinetic Studies, J. Biol. Chem., 254, 6449–6455.

    CAS  Google Scholar 

  • Powlowski, J. B., Ballou, D. P., and Massey, V. (1990) Studies of the Oxidative Half-reaction of Anthranilate Hydroxylase (Deaminating) with Native and Modified Substrates, J. Biol. Chem., 265, 4969–4975.

    CAS  Google Scholar 

  • Powlowsiki, J. B., Dagley, S., Massey, V., and Ballou, D. P. (1987) Properties of Anthranilate Hydroxylase (Deaminating), a Flavoprotein from Trichosporon Cutaneum. J. Biol. Chem., 262, 69–74.

    Google Scholar 

  • Prairie, R. L., and Talalay, P. (1963) Enzymatic Formation of Testolactone. Biochemistry, 2, 203–208.

    CAS  Google Scholar 

  • Raushel, F. M., and Baldwin, T. O. (1989) Proposed Mechanism for the Bacterial Bioluminescence Reaction Involving a Dioxirane Intermediate. Biochem. Biophys. Res. Commun., 164, 1137–1142.

    CAS  Google Scholar 

  • Ryerson, C. C., Ballou, D. P., and Walsh, C. (1982) Mechanistic Studies on Cyclohexanone Oxygenase. Biochemistry, 21, 2644–2655.

    CAS  Google Scholar 

  • Schopfer, L. M., Wessiak, A., and Massey, V. (1991) Interpretation of the Spectra Observed During Oxidation of p-Hydroxybenzoate Hydroxylase Reconstituted with Modified Flavins. J. Biol. Chem., 266, 13080–13085.

    CAS  Google Scholar 

  • Schreuder, H. A., Hol, W. G. J., and Drenth, J. (1990) Analysis of the Active Site of the Flavoprotein p-Hydroxybenzoate Hydroxylase and Some Ideas with Respect to Its Reaction Mechanism. Biochemistry, 29, 3101–3108.

    CAS  Google Scholar 

  • Schreuder, H. A., Prick, P. A. J., Wierenga, R. K., Vriend, G., Wilson, K. S., Hol, W. G. J., and Drenth, J. (1989) Crystal Structure of the p-Hydroxybenzoate Hydroxylase-Substrate Complex Refined at 1.9 Å Resolution: Analysis of the Enzyme-Substrate and Enzyme-Product Complexes. J. Mol. Biol., 208, 679–696.

    CAS  Google Scholar 

  • Schreuder, H. A., van der Lann, J. M., Hol, W. G. J., and Drenth, J. (1988) Crystal Structure of p-hydroxybenzoate Hydroxylase Complexed with Its Reaction Product, 3,4-Dihydroxybenzoate. J. Mol. Biol., 199, 637–648.

    CAS  Google Scholar 

  • Schreuder, H. A., Van Der Lann, J. M., Swarte, M. B. A., Kalk, K. H., Hol, W. G. J., and Drenth, J. (1992) Crystal Structure of the Reduced Form of p-Hydroxybenzoate Hydroxylase Refined at 2.3 Å Resolution. Proteins: Structure, Function, and Genetics, 14, 178–190.

    CAS  Google Scholar 

  • Schwab, J. M., Li, W. B., and Thomas, L. P. (1983) Cyclohexanone Oxygenase: Stereochemistry, Enantioselectivity, and Regioselectivity of an Enzyme-catalyzed Baeyer-Villiger Reaction J. Am. Chem. Soc., 105, 4800–4808.

    CAS  Google Scholar 

  • Shoun, H., Beppu, T., and Arima, K. (1979) On the Stable Enzyme · Substrate Complex of p-Hydroxybenzoate Hydroxylase. Evidences for the Proton Uptake from the Substrate. J. Biol. Chem., 254, 899–904.

    CAS  Google Scholar 

  • Siegmund, H., and Kaufman, S. (1991) Hydroxylation of 4-Methylphenyl-alanine by Rat Liver Phenylalanine Hydroxylase. J. Biol. Chem., 266, 2903–2910.

    CAS  Google Scholar 

  • Taylor, M. G., and Massey, V. (1990) Decay of the 4a-Hydroxy-FAD Intermediate of Phenol Hydroxylase. J. Biol. Chem., 265, 13687–13694.

    CAS  Google Scholar 

  • Tourian, A. (1971) Activation of Phenylalanine Hydroxylase by Phenylalanine. Biochim. Biophys. Acta, 242, 345–354.

    CAS  Google Scholar 

  • Vervoort, J., Müller, F., Lee, J., Van Den Berg, W. A. M., and Moonen, C. T. (1986a) Identifications of the True Carbon-13 Nuclear Magnetic Resonance Spectrum of the Stable Intermediate II in Bacterial Luciferase. Biochemistry, 25, 8062–8067.

    CAS  Google Scholar 

  • Vervoort, J., Müller, F., okane, D J., Lee, J., and Bacher, A. (1986b) Bacterial Luciferase: A Carbon-13, Nitrogen-15, and Phosphorus-31 Nuclear Magnetic Resonance Investigation. Biochemistry, 25, 8067–8075.

    CAS  Google Scholar 

  • Vervoort, J., Rietjens, I. M. C. M., van Berkel, W. J. H., and Veeger, C. (1992) Frontier Orbital Study on the 4-Hydroxybenzoate-3-hydroxylase-dependent Activity with Benzoate Derivatives. Eur. J. Biochem., 206, 479–484.

    CAS  Google Scholar 

  • Wallick, D. E., Bloom, L. M., Gaffney, B. J., and Benkovic, S. J. (1984) Reductive Activation of Phenylalanine Hydroxylase and Its Effect on the Redox State of the Non-Heme Iron. Biochemistry, 23, 1295–1302.

    CAS  Google Scholar 

  • Walsh, C. T., and Chen, Y.-C. J. (1988) Enzymic Baeyer-Villiger Oxidations by Flavin-dependent Monooxygenases. Angew. Chem. Int. Ed. Engl., 27, 333–343.

    Google Scholar 

  • Wang, R., and Thorpe, C. (1991) Reactivity of Medium-chain Acyl-CoA Dehydrogenase Toward Molecular Oxygen. Biochemistry, 30, 1895–1901.

    Google Scholar 

  • Wessiak, A., and Bruice, T. C. (1983) Synthesis and Study of a 6-Amino-5-oxo-3H, 5H-uracil and Derivatives. The Structure of an Intermediate Proposed in Mechanisms of Flavin and Pterin Oxygenases. J. Am. Chem. Soc., 105, 4809–4825.

    CAS  Google Scholar 

  • Wessiak, A., Noar, J. B., and Bruice, T. C. (1984a) The Possibility That the Spectrum of Intermediate Two, Seen in the Course of Reaction of Flavoenzyme Phenol Hydroxylases, May Be Attributable to Iminol Isomers of a Flavin-dervived 6-Arylamino-5-oxo(3H, 5H) Uracil. Proc. Natl. Acad. Sci. U.S.A., 81, 332–336.

    CAS  Google Scholar 

  • Wessiak, A., Schopfer, L. M., Yuan, L. C, Bruice, T. C, and Massey, V. (1984b) Use of Riboflavin-binding Protein to Investigate Steric and Electronic Relationships in Flavin Analogs and Models. Proc. Natl. Acad. Sci. U.S.A., 81, 4246–4249.

    CAS  Google Scholar 

  • White, K. A., and Marletta, M. A. (1992) Nitric Oxide Synthase is a Cytochrome P450 Type Hemoprotein. Biochemistry, 31, 6627–6631.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Palfey, B.A., Ballou, D.P., Massey, V. (1995). Oxygen Activation by Flavins and Pterins. In: Valentine, J.S., Foote, C.S., Greenberg, A., Liebman, J.F. (eds) Active Oxygen in Biochemistry. Structure Energetics and Reactivity in Chemistry Series (SEARCH series), vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0609-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0609-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7514-0372-5

  • Online ISBN: 978-94-011-0609-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics