Skip to main content

The Role of Oxidized Lipids in Cardiovascular Disease

  • Chapter
Active Oxygen in Biochemistry

Abstract

Lipid oxidation products play an important role in normal biology and in a number of disease processes (Sevanian and Hochstein, 1985; Marx, 1987). Oxidation products have been shown to be abnormal in many of the major chronic diseases, including rheumatoid arthritis, cancer, Alzheimer’s disease, and diabetes. In the last 5 years, the role of oxidized lipids in cardiovascular disease has been the subject of extensive studies (Steinberg et al., 1989; Witztum and Steinberg, 1991). Alterations in the synthetic rates of naturally occurring oxidized lipids and effects of lipid oxidation products that form as the result of non-physiological free-radical-generating processes have been shown to play a key role in blood vessel diseases such as atherosclerosis and thrombosis. Atherosclerosis leads to thickening of the wall of the blood vessel, reducing blood flow. Thrombosis is the formation of a blood clot which can completely stop blood flow in an already narrowed vessel. Ischemia (interruption of blood flow) following the development of atherosclerosis and thrombosis is the predominant cause of heart attacks, strokes (blood clots shutting off brain vessels), and ischemic syndromes (chest pains and irregular heartbeat) which are responsible for significant human morbidity and mortality. In this chapter, we will focus on the role of oxidized lipids in atherosclerosis and thrombosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamsen, A. F. (1968) Platelet Survival Studies in Man with Special Reference to Thrombosis and Atherosclerosis. Scand. J. Haematol., Suppl. 3, 1–53.

    CAS  Google Scholar 

  • Altman, R., and Scazziota, A. (1986) Synergistic Actions of PAF-acether and Sodium Arachidonate in Human Platelet Aggregation. 2. Unexpected Results After Asprin Intake. Thromb. Res., 43, 113–120.

    Article  CAS  Google Scholar 

  • Andrews, H. E., Aitaken, J. W., Hassall, D. G., Skinner, V. O., and Bruckdorfer, K. R. (1987) Intracellular Mechanisms in the Activation of Human Platelets by Low Density Lipoproteins. Biochem. J., 242, 559–564.

    CAS  Google Scholar 

  • Ardlie, N. G., Selley, M. L., and Simms, L. A. (1989) Platelet Activation by Oxidatively Modified Low Density Lipoproteins. Atherosclerosis, 76, 117–124.

    Article  CAS  Google Scholar 

  • Astrup, T. (1956) Analytical Review. Fibrinolysis in the Organism. Blood, 11, 781–806.

    CAS  Google Scholar 

  • Aviram, M. (1989) Modified Forms of Low Density Lipoprotein Affect Platelet Aggregation in vitro. Thromb. Res., 53, 561–567.

    Article  CAS  Google Scholar 

  • Belotsky, S. M., Guzu, E. V., Karlov, V. A., Dikovskaya, E. S., Filjokova, O. B., and Snastina, T. I. (1990) Wound Tissue Respiratory Burst and Local Microbial Inflammation. Inflammation, 14, 663–668.

    Article  CAS  Google Scholar 

  • Berliner, J. A., Territo, M. C., Sevanian, A., Ramin, S., Kim, J. A., Barnshad, B., Esterson, M., and Fogelman, A. M. (1990) Minimally Modified Low Density Lipoprotein Stimulates Monocyte Endothelial Interactions, J. Clin. Invest., 85, 1260–1266.

    Article  CAS  Google Scholar 

  • Cathcart, M. K., McNally, A. K., Morel, D. W., and Chisolm, G. M. (1989) Superoxide Anion Participation in Human Monocyte-mediated Oxidation of Low Density Lipoprotein and Conversion of Low Density Lipoprotein to a Cytotoxin. J. Immunol., 142, 1963–1969.

    CAS  Google Scholar 

  • Ciavatti, M., and Renaud, S. (1991) Oxidative Status and Oral Contraceptive. Its Relevance to Platelet Abnormalities and Cardiovascular Risk. Free Radical Biol. Med., 10, 325–338.

    Article  CAS  Google Scholar 

  • Couch, J. R., and Hassanein, R. S. (1976) Platelet Aggregation, Stroke, and Transient Ischemic Attack in Middle-aged and Elderly People. Neurology, 26, 888–895.

    Article  CAS  Google Scholar 

  • DahlĂ©n, S. E., Björk, J., Hedqvist, P., Arfors, D. E., Hammarström, S., Lindgren, J. A., and Sammuelsson, B. (1981) Leukotrienes Promote Plasma Leakage and Leukocyte Adhesion in Postcapillary Venules: in vivo Effects with Relevance to the Acute Inflammatory Response. Proc. Natl Acad. Sci. U.S.A., 78, 3887–3891.

    Article  Google Scholar 

  • Davis, J. W., Phillips, P. E., and Yeu, K. T. N. (1978) Platelet Aggregation, Adult Onset Diabetes Mellitus and Coronary Artery Disease. JAMA, 239, 732–734.

    Article  CAS  Google Scholar 

  • Drake, T. A., Hannani, K., Fei, H., Lavi, S. and Berliner, J. A. (1991) Minimally Oxidized Low-density Lipoprotein Induces Tissue Factor Expression in Cultured Human Endothelial Cells. Am. J. Pathol., 138, 601–607.

    CAS  Google Scholar 

  • Dussault, P. (1995) Reactions of Hydroperoxides and Peroxides in Active Oxygen in Chemistry (C. S. Foote, J. S. Valentine, A. Greenberg, and J. F. Liebman, Eds.) Chapman and Hall, pp. 141–203.

    Google Scholar 

  • Esterbauer, H., Gebicki, J., Puhl, H., and Jurgens, G. (1992) The Role of Lipid Peroxidation and Antioxidants in Oxidative Modification of LDL. Free Rad. Biol Med., 13, 341–390.

    Article  CAS  Google Scholar 

  • Grossi, Z. M., Fitzgerald, L. A., Umbarger, L. A., Nelson, K., Diglio, C. A., Taylor, J. D., and Honn, K. V. (1989) Bidirectional Control of Membrane Expression and/or Activation of the Tumor Cell IRGpIIb/IIa Receptor and Tumor Cell Adhesion by Lipoxygenase Products of Arachidonic Acid and Linoleic Acid. Cancer Res., 49, 1029–1037.

    CAS  Google Scholar 

  • Haberland, M. E., Fong, D., and Cheng, L. (1988) Malondialdehydealtered Protein Occurs in Atheroma of Watanabe Heritable Hyperlipemic Rabbits. Science, 241, 215–218.

    Article  CAS  Google Scholar 

  • Hajjar, D. P., and Pomerantz, K. B. (1992) Signal Transduction in Atherosclerosis: Integration of Cytokines and the Eicosanoid Network. FASEB J., 6, 2933–2941.

    CAS  Google Scholar 

  • Halliwell, B., Gutteridge, J. M., and Cross, C. E. (1992) Free Radicals, Antioxidants, and Human Disease. Where Are We Now? J. Lab. Clin. Med., 119, 598–619.

    CAS  Google Scholar 

  • Hamberg, M., Svensson, J., and Sammuelsson, B. (1975) Thromboxanes: A New Group of Biologically Active Compounds Derived from Prostaglandin Endoperoxides. Proc. Natl Acad. Sci. U.S.A., 72, 2994–2998.

    Article  CAS  Google Scholar 

  • Hawkins, R. I. (1972) Smoking, Platelets, and Thrombosis. Nature, 236, 450–452.

    Article  CAS  Google Scholar 

  • Heinecke, J. W., Rosen, H., and Chait, A. (1984) Iron and Copper Promote Modification of Low Density Lipoprotein by Human Arterial Smooth Muscle Cells in Culture, J. Clin. Invest., 74, 1890–1894.

    Article  CAS  Google Scholar 

  • Heinecke, J. W., Rosen, H., Suzuki, L. A., and Chait, A. (1987) The Role of Sulfur-containing Amino Acids in Superoxide Production and Modification of Low Density Lipoprotein by Arterial Smooth Muscle Cells, J. Biol Chem., 262, 10098–10103.

    CAS  Google Scholar 

  • Heinecke, J. W., Li, W., Francis, G. A., and Goldstein, J. A. (1993) Tyrosyl Radicals Generated by Myeloperoxidase Catalyze the Oxidative Cross-linking of Proteins, J. Clin. Invest., 91, 2866–2872.

    Article  CAS  Google Scholar 

  • Humphrey, D. M., McManus, L. M., Hanahan, D. J., and Pinckard, R. N. (1983) Morphological Basis of Increased Vascular Permeability Induced by Acetyl Glyceryl Ether Phosphorylcholine. Lab. invest., 50, 16–25.

    Google Scholar 

  • Humphrey, D. M., McManus, L. M., Satouchi, K., Hanahan, D. J., and Pinckard, R. N. (1982) Vasoactive Properties of Acetyl Glyceryl Ether Phosphorylcholine (AGEPC) and AGEPC Analogues. Lab. Invest., 46, 422–427.

    CAS  Google Scholar 

  • Jennings, P. E., McLaren, M., Scott, N. A., Saniabade, A. R., and Belch, J. J. F. (1991) The Relationship of Oxidative Stress to Thrombotic Tendency in Type 1 Diabetic Patients with Retinopathy. Diabetic Med., 8, 860–865.

    Article  CAS  Google Scholar 

  • Johnson, M., Ramey, E., and Ramwell, P. W. (1975) Sex and Age Differences in Human Platelet Aggregation. Nature, 253, 355–357.

    Article  CAS  Google Scholar 

  • Jorgensen, K. A., Dyerberg, J., Olesen, A. S., and Stoffersen, E. (1980) Acetylsalicylic Acid, Bleeding Time, and Age. Thromb. Res., 19, 799–805.

    Article  CAS  Google Scholar 

  • Kinsella, J. E. (1987) Effect of Polyunsaturated Fatty Acids on Factors Related to Cardiovascular Disease. Am. J. Cardiol., 60, pg23G-32G.

    Google Scholar 

  • Kramp, W., Pieroni, G., Pinckard, R. N., and Hanahan, D. J. (1984) Observations of the Critical Micellar Concentration of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine and a Series of its Homologs and Analogs. Chem. Phys. Lipids, 35, 49–62.

    Article  CAS  Google Scholar 

  • Ku, G., Thomas, C. E., Adeson, A. L., and Jackson, R. L. (1992) Induction of Interleukin-1 Beta Expression from Human Peripheral Blood Monocytederived Macrophages by 9-Hydroxyoctadecadienoic Acid. J. Biol. Chem., 267, 14183–14188.

    CAS  Google Scholar 

  • Lanchbury, J. S., and Ptzalis, C. (1993) Cellular Immune Mechanisms in Rheumatoid Arthritis and Other Inflammatory Arthritides. Curr. Opin. Immunol., 5, 918–924.

    Article  CAS  Google Scholar 

  • Lands, W. E. M. (1985) Interactions of Lipid Hydroperoxides with Eicosanoid Biosynthesis, J. Free Rad. Biol. Med., 1, 97–101.

    Article  CAS  Google Scholar 

  • Lernam, A., Hallet, J. W., Heubleein, D. M., and Bernett, J. C. (1991) The Role of Endothelin as a Marker of Diffuse Atherosclerosis in the Human. N. Engl. J. Med., 325, 997–1001.

    Article  Google Scholar 

  • Ludwig, J. C., McManus, L. M., Clark, P. O., Hanahan, D. J., and Pinckard, R. N. (1984) Modulation of Platelet-activating Factor (PAF) Synthesis and Release from Human Polymorphonuclear Leukocytes (PMN): Role of Extracellular Ca2+. Arch. Biochem. Biophys., 232, 102–110.

    Article  CAS  Google Scholar 

  • Marcus, A. J. (1984) The Eicosanoids in Biology and Medicine, J. Lipid Res., 25, 1511–1516.

    CAS  Google Scholar 

  • Marx, J. L. (1987) Oxygen Free Radicals Linked to Many Diseases. Science, 235, 529–531.

    Article  CAS  Google Scholar 

  • McManus, L. M., Hanahan, D. J., and Pinckard, R. N. (1981) Human Platelet Stimulation by Acetyl Glyceryl Ether Phosphorylcholine (AGEPC). J. Clin. Invest., 67, 903–906.

    Article  CAS  Google Scholar 

  • Moncada, S. (1982) Biological Importance of Prostacyclin. Br. J. Pharmacol., 76, 3–31.

    Article  CAS  Google Scholar 

  • Moncada, S., Palmer, R. M. J., and Higgs, E. A. (1987) Prostacyclin and Endothelium-derived Relaxing Factor: Biological Interactions and Significance, in Thrombosis and Hemostasis (M. Verstraete, J. Vermylin, R. Lijnen, and J. Arnout, Eds.), Leuven University Press, Leuven, Belgium, pp. 505–523.

    Google Scholar 

  • Moncada, S., and Vane, J. R. (1979) Arachidonic Acid Metabolites and the Interactions Between Platelet and Blood Vessels. N. Engl. J. Med., 300, 1142–1147.

    Article  CAS  Google Scholar 

  • Naseem, K. M., Goodall, A. H., and Bruckdorfer, K. R. (1993) The Effects of Native and Oxidized Low Density Lipoprotein on Platelet Activation. Biochem. Soc. Trans., 21, 140S.

    Google Scholar 

  • O’Flaherty, J. T. (1985) Neutrophil Degranulation: Evidence Pertaining to its Mediation by the Combined Effects of Leukotriene B4, Platelet Activating Factor, and 5 HETE. J. Cell. Physiol., 122, 229–239.

    Article  Google Scholar 

  • OTlaherty, J. T., Miller, C. H., Lewis, J. C., Wykle, R. L., Bass, D. A., McCall, E. E., Waite, M., and DeDhatelet, L. R. (1981) Neutrophil Responses to Platelet-activating Factor. Inflammation, 5, 193–201.

    Article  Google Scholar 

  • Palmer, R. M. J., Ferrige, A. G., and Moncada, S. (1987) Nitric Oxide Release Accounts for the Biological Activity of Endothelium-derived Relaxing Factor. Nature, 327, 524–526.

    Article  CAS  Google Scholar 

  • Parthasarathy, S. (1987) Oxidation of Low Density Lipoprotein by Thiol Compounds Leads to its Recognition by the Acetyl LDL Receptor. Biochim. Biophys. Acta, 917, 337–340.

    Article  CAS  Google Scholar 

  • Pettersen, K. S., Boberg, K. M., Stabersvik, A., and Prydz, H. (1991) Toxicity of Oxygenated Cholesterol Derivatives Toward Cultured Human Umbilical Vein Endothelial Cells. Arterioscler. Thromb., 11, 423–428.

    Article  CAS  Google Scholar 

  • Pinckard, R. N., McManus, L. M., and Hanahan, D. J. (1982) Chemistry and Biology of Acetyl Glyceryl Ether Phosphorylcholine (Platelet Activating Factor), in Advances in Inflammation Research (G. Weissmann, Ed.), Raven Press, New York, 4, pp. 147–180.

    Google Scholar 

  • Pritchard, K. A., Tota, R. R., Stemerman, M. B., and Wong, P. Y. (1990) 14,15 EET Promotes Endothelial Cell Dependent Adhesion of Human Monocytic Tumor U937 Cells. Biochem. Biophys. Res. Commun., 167, 137–142.

    Article  CAS  Google Scholar 

  • Rosenberg, R. D. (1987) The Heparin-Antithrombin System: A Natural Anticoagulant Mechanism, in Hemostasis and Thrombosis: Basic Principles and Clinical Practice (R. W. Colman, J. Hirsh, V. J. Marder, and E. W. Salzman, Eds.), J. B. Lippincott, Philadelphia, pp. 1373–1392.

    Google Scholar 

  • Rosenfeld, M. E., Palinski, W., Ylä-Herttuala, S., Butler, S., and Witztum, J. L. (1990) Distribution of Oxidation Specific Lipid-protein Adducts and Apolipoprotein B in Atherosclerotic Lesions of Varying Severity from WHHL Rabbits. Arteriosclerosis, 10, 336–349.

    Article  CAS  Google Scholar 

  • Ross, R. (1986) The Pathogenesis of Atherosclerosis—An Update. N. Engl. J. Med., 314, 488–500.

    Article  CAS  Google Scholar 

  • Rossi, A. G., and O’Flaherty, J. T. (1991) Bioactions of 5-Hydroxyeicosatetraenoate and its Interaction with Platelet-activating Factor. Lipids, 26, 1184–1188.

    Article  CAS  Google Scholar 

  • Saba, S. R., and Mason, R. G. (1975) Some Effects of Nicotine on Platelets. Thromb. Res., 7, 819–824.

    Google Scholar 

  • Serhan, C. N. (1991) Lipoxins: Eicosanoids Carrying Intra-and Intercelluar Messages. J. Bioenerg. Biomemb., 23, 105–122.

    CAS  Google Scholar 

  • Serhan, C. N., and Samuelsson, B. (1988) Lipoxins; A New Series of Eicosanoids (Biosynthesis, Stereochemistry, and Biological Activity). Adv. Exp. Med. Biol., 229, 1–14.

    CAS  Google Scholar 

  • Sevanian, A., Berliner, J. A., and Peterson, H. (1991) Uptake, Metabolism and Cytotoxicity of Isomeric Cholesterol-5,6-epoxides in Rabbit Aortic Endothelial Cells. J. Lipid Res., 32, 147–155.

    CAS  Google Scholar 

  • Sevanian, A., and Hochstein, P. (1985) Mechanisms and Consequences of Lipid Peroxidation in Biological Systems. Annu. Rev. Nutr., 5, 365–390.

    Article  CAS  Google Scholar 

  • Sie, P., Montagut, J., Blanc, M., Boneu, B., Caranobe, C., Cazard, J. C., and Bierme, R. (1981) Evaluations of Some Platelet Parameters in a Group of Elderly People. Thromb. Haemostas., 45, 197–199.

    CAS  Google Scholar 

  • Smiley, P. L., Stremler, K. E., Prescott, S. M., Zimmerman, G. A., and McIntyre, T. M. (1991) Oxidatively Fragmented Phosphatidylcholines Activate Human Neutrophils Through the Receptor for Platelet Activating Factor, J. Biol. Chem., 266, 11104–11110.

    CAS  Google Scholar 

  • Smith, M. J. H., Ford-Hutchinson, A. W., and Bray, M. A. (1980) Leukotriene B: A Potential Mediator of Inflammation. J. Pharm. Pharmacol., 32, 517–518.

    Article  CAS  Google Scholar 

  • Sperber, K. (1993) Asthma: An Inflammatory Disease. Mount Sinai J. Med., 60, 218–226.

    CAS  Google Scholar 

  • Steinberg, D., Parthasarathy, S., Carew, T. E., Khoo, J. C., and Witztum, J. L. (1989) Beyond Cholesterol. Modifications of Low Density Lipoprotein That Increase its Atherogenicity. N. Engl J. Med., 320, 915–924.

    Article  CAS  Google Scholar 

  • Steinbrecher, U. P. (1988) Role of Superoxide in Endothelial Cell Modification of LDL. Biochim. Biophys. Acta, 959, 20–30.

    Article  CAS  Google Scholar 

  • Steinbrecher, U. P., Parthasarathy, S., Leake, D. S., Witztum, J. L., and Steinberg, D. (1984) Modification of Low Density Lipoprotein by Endothelial Cells Involves Lipid Peroxidation and Degradation of Low Density Lipoprotein Phospholipids. Proc. Natl. Acad. Sci. U.S.A., 81, 3883–3887.

    Article  CAS  Google Scholar 

  • Surya, I. I., Gorter, G. Mommersteeg, M., and Akkerman, J. W. N. (1992) Enhancement of Platelet Functions by Low Density Lipoproteins. Biochim. Biophys. Acta, 1165, 19–26.

    Article  CAS  Google Scholar 

  • Szczeklik, A., and Grglewski, R. J. (1991) Low Density Lipoproteins Are Carriers for Lipid Peroxides and Inhibit Prostacyclin Biosynthesis in Arteries. Artery, 7, 488–495.

    Google Scholar 

  • Terkeltaub, R. A. (1993) Gout and Mechanisms of Crystal-induced Inflammation. Curr. Opin. Rheumatism, 36, 1274–1285.

    Google Scholar 

  • Thiemerman, C., Mitchell, J. A., and Ferns, G. A. A. (1993) Eicosanoids and Atherosclerosis. Curr. Opin. Lipidol., 4, 401–406.

    Article  Google Scholar 

  • Varicel, E., Croset, M., Sedivy, P., Courpron, P., Dechavanne, M., and Lagarde, M. (1988) Platelets and Aging. I—Aggregation, Arachidonate Metabolism, and Antioxidant Status. Thrombos. Res., 49, 331–342.

    Article  Google Scholar 

  • Verbeuren, T. J., Jordaens, F. H., Zonnekeyn, I. L., Van Hove, C. E., Coene, M. C., and Herman, A. G. (1986) Effect of Hypercholesterolemia on Vascular Reactivity in the Rabbit. Circ. Res., 58, 552–564.

    Article  CAS  Google Scholar 

  • Walker, F. J. (1984) The Control of Prothrombin Activation, in The Thrombi (R. Machovich, Ed.), CRC Press, Boca Raton, FL, pp. 57–88.

    Google Scholar 

  • Warso, M. A., and Lands, W. E. M. (1983) Lipid Peroxidation in Relation to Prostacyclin and Thromboxane Physiology and Pathophysiology. Br. Med. Bull., 39, 277–280.

    CAS  Google Scholar 

  • Witztum, J. L., and Steinberg, D. (1991) Role of Oxidized Low Density Lipoprotein in Atherogenesis. J. Clin. Invest., 88, 1785–1792.

    Article  CAS  Google Scholar 

  • Ylä-Herttuala, S., Palinski, W., Rosenfeld, M. E., Parthasaraty, S., Carew, T. E., Butler, S., Witztum, J. L., and Steinberg, D. (1989) Evidence for the Presence of Oxidatively Modified Low Density Lipoprotein in Atherosclerotic Lesions of Rabbit and Man. J. Clin. Invest., 84, 1086–1095.

    Article  Google Scholar 

  • Zahavi, J., Jones, N. A. G., Leyton, J., Dubiel, M., and Kakkar, V. V. (1980) Enhanced in vivo Platelet “Release Reaction” in Old Healthy Individuals. Thromb. Res., 17, 329–336.

    Article  CAS  Google Scholar 

  • Zhang, H., Yang, V., and Steinbrecher, U. (1993) Structural Requirements for the Binding of Modified Proteins to the Scavenger Receptor, J. Biol. Chem., 268, 5535–5542.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Berliner, J.A., Watson, A.D. (1995). The Role of Oxidized Lipids in Cardiovascular Disease. In: Valentine, J.S., Foote, C.S., Greenberg, A., Liebman, J.F. (eds) Active Oxygen in Biochemistry. Structure Energetics and Reactivity in Chemistry Series (SEARCH series), vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0609-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0609-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7514-0372-5

  • Online ISBN: 978-94-011-0609-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics