Skip to main content

Numerical analysis and modelling of the damage and softening of brick masonry

  • Chapter
Numerical Analysis and Modelling of Composite Materials

Abstract

Despite its texture as a periodic composite material, masonry is generally modelled as a ‘concrete-like’ material, so that its anisotropic nature is not taken into account. A way to derive an enhanced constitutive model for masonry, closely related to the behaviour of its constituent materials (mortar and bricks) and to its geometry (bond pattern, thickness of the mortar joints, etc.), is to take advantage of the homogenization techniques, which have been extensively developed for composite materials. Among them, the homogenization theory for periodic media seems particularly suitable. According to this theory, the global behaviour of masonry may be derived by solving a boundary value problem on a small domain to be repeated by translation (cell) with particular boundary conditions (periodicity) and special type of loading (average of strain and/or stress). This problem turns out to be generally well posed: in linear elasticity, it yields the macroscopic elastic characteristics of masonry (in the case of running bond masonry, the four constants defining the equivalent orthotropic material) [1]. In the non-linear range (damage or plasticity), it may be used to determine the failure criterion of the homogenized material: in the stress (or strain) space, radial loading paths are imposed and, for each direction considered, the maximum stress, the corresponding strain and the pattern of failure are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anthoine, A., Derivation of the in-plane elastic characteristics of masonry through homogenization theory. Int. J. Solids Struct., 32(2) (1995) 137–163.

    Article  Google Scholar 

  2. Maier, G., Nappi, A. and Papa, E., Damage models for masonry as a composite material: a numerical and experimental analysis. In Constitutive Laws for Engineering Materials (eds Desai, C.S., et al.). ASME Press, New York (1991) pp. 427–432.

    Google Scholar 

  3. Pande, G.N., Liang, J.X. and Middleton, J., Equivalent elastic moduli for brick masonry. Computers and Geotechnics, 8(5) (1989) 243–265.

    Article  Google Scholar 

  4. Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity. Dover Publications, New York, 1944.

    Google Scholar 

  5. Milne-Thomson, L.M., Plane and Antiplane Elastic Systems. Springer-Verlag, Berlin, 1960.

    Google Scholar 

  6. Lekhnitskii, S.G., Theory of Elasticity of an Anisotropic Body. MIR, Moscow, 1981.

    Google Scholar 

  7. Saada, A.S., Elasticity: Theory and Application. Pergamon Press, Oxford, 1974.

    Google Scholar 

  8. Pietruszczak, S. and Niu, X., A mathematical description of macroscopic behaviour of brick masonry. Int. J. Solids Struct., 29(5) (1992) 531–546.

    Article  Google Scholar 

  9. Bensoussan, A., Lions, J.-L. and Papanicolaou, G., Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam, 1978.

    Google Scholar 

  10. Duvaut, G., Homogénéisation et matériaux composites. In Trends and Applications of Pure Mathematics to Mechanics (Lecture Notes in Physics 195) (eds Ciariet, P.G. and Roseau, M.). Springer, Berlin (1984), pp. 35–62.

    Chapter  Google Scholar 

  11. Sanchez-Palencia, E., Non-homogeneous Media and Vibration Theory (Lecture Notes in Physics 127). Springer, Berlin, 1980.

    Google Scholar 

  12. Dhanasekar, M, Page, A.W. and Kleeman, P.W., The elastic properties of brick masonry. Int. J. Masonry Construct., 2(4) (1982) 155–160.

    Google Scholar 

  13. Suquet, P.-M., Elements of homogenization for inelastic solid mechanics. In Homogenization Techniques for Composite Media (eds Sanchez-Palencia, E. and Zaoui, A.) Springer-Verlag, Berlin, 1987, pp. 193–279.

    Chapter  Google Scholar 

  14. Page, A.W., Finite element model for masonry. ASCE J. Struct. Engng, 104(8) (1978) 1267–1285.

    Google Scholar 

  15. Lotfi, H.R. and Shing, P.B., Interface model applied to fracture of masonry structures. ASCE J. Struct. Engng, 120(1) (1994) 63–80.

    Article  Google Scholar 

  16. Lourenço, P.B., Rots, J.G. and Blaauwendraad, J., Implementation of an interface cap model for the analysis of masonry structures. In Computational Modelling of Concrete Structures (Vol. 1) (eds Mang, H., et al.). Pineridge Press, Swansea, 1994, pp. 123–134.

    Google Scholar 

  17. Mazars, J., A description of micro- and macroscale damage of concrete structures. Engng Tract. Mech., 25 (1986) 729–737.

    Article  Google Scholar 

  18. Bazant, Z.P., Numerical simulation of progressive fracture in concrete structures: recent developments. In Computer Aided Analysis and Design of Concrete Structures (Part 1) (eds Damjanic, F., et al.). Pineridge Press, Swansea, 1984, pp. 1–18.

    Google Scholar 

  19. Willam, K.J., Experimental and computational aspects of concrete fracture. In Computer Aided Analysis and Design of Concrete Structures (Part 1) (eds Damjanic, F., et al.). Pineridge Press, Swansea, 1984, pp. 33–70.

    Google Scholar 

  20. de Borst, R., Muhlhaus, H.B., Pamin, J., et al., Computational modelling of localization of deformation. In Computational Plasticity (Part 1) (eds Owen, D.R.J., et al.). Pineridge Press, Swansea, 1992, pp. 483–508.

    Google Scholar 

  21. Pijaudier-Cabot, G. and Bazant, Z.P., Non local damage theory. ASCE J. Engng Mech., 113 (1987) 1512–1533.

    Article  Google Scholar 

  22. Mazars, J., Pijaudier-Cabot, G. and Saouridis, C, Size effect and continuous damage in cementitious materials. Int. J. Tract., 51 (1991) 159–173.

    CAS  Google Scholar 

  23. Bazant, Z.P. and Pijaudier-Cabot, G., Non local continuum damage, localization instability and convergence. ASME J. Appl. Mech., 55 (1988) 287–293.

    Article  Google Scholar 

  24. CASTEM 2000, Guide d’utilisation. CEA, Saclay, 1990.

    Google Scholar 

  25. Verpeaux, P., Millard, A., Charras, T., et al., A modern approach of large computer codes for structural analysis. In Transactions of the 10th SMIRT Conference (Vol. B) (ed. Hadjian, A.H.), AASMIRT, Los Angeles, 1989, pp. 75–78.

    Google Scholar 

  26. Charras, T., Millard, A. and Verpeaux, P., Solution of 2D and 3D contact problems by mean of Lagrange multipliers in the CASTEM 2000 finite element program. In Proceedings of the Conference on Contact Mechanics (eds Aliabadi, M.H. and Brebbia, C.A.), Computer Mechanics Publication, Southampton, 1993, pp. 183-194.

    Google Scholar 

  27. Swan, C.C., Techniques for stress- and strain-controlled homogenization of inelastic periodic composites. Computer Meth. Appl. Mech. Engng, 111 (1994) 249–267.

    Article  Google Scholar 

  28. Pegon, P. and Anthoine, A., Numerical strategies for solving continuum damage problems involving softening: application to the homogenization of masonry. In Advances in Non-linear Finite Element Methods (eds Topping, B.H.V. and Papadrakakis, M.). Civil- Comp Press, Edinburgh, 1994, pp. 143-157.

    Chapter  Google Scholar 

  29. Pijaudier-Cabot, G. and Huerta, A., Finite element analysis of bifurcation in non-local strain softening solids. Computer Meth. Appl. Mech. Engng, 90 (1991) 905–919.

    Article  Google Scholar 

  30. Crisfield, M.A., Non-linear Finite Element Analysis of Solids and Structures (Vol. 1). J. Wiley and Sons, Chichester, 1991.

    Google Scholar 

  31. Riks, E., An incremental approach to the solution of snapping and buckling problems. Int. J. Solids Struct., 15 (1979) 529–551.

    Article  Google Scholar 

  32. Wempner, G.A., Discrete approximations related to non linear theories of solids. Int. J. Solids Struct., 7 (1971) 1581–1599.

    Article  Google Scholar 

  33. Anthoine, A., In-plane behaviour of masonry: a literature review (Report EUR 13840 EN). European Commission, Luxembourg, 1991.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Anthoine, A., Pegon, P. (1996). Numerical analysis and modelling of the damage and softening of brick masonry. In: Bull, J.W. (eds) Numerical Analysis and Modelling of Composite Materials. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0603-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0603-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4266-6

  • Online ISBN: 978-94-011-0603-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics