Skip to main content

Determination of interfacial properties and stresses in continuous fiber-reinforced ceramic composites by means of single-fiber indentation tests

  • Chapter

Abstract

Continuous fiber-reinforced ceramic composites (CFCCs) are candidate materials for numerous components and applications in the energy-related industries because of their potential for strength retention and tough behavior at elevated temperatures. Since the design of these components will also require the design of the CFCC itself, it is necessary to know the effect of the properties of the constituents and their interfaces in a number of micromechanical mechanisms which are responsible for the macroscopic mechanical behavior of CFCCs. Furthermore, considering that the pay-off of using CFCCs will be greatest for long service life applications, it is also necessary to determine how these mechanisms would change with time, temperature and environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lowden, R.A. and Stinton, D.P., Interface modification in Nicalon/SiC composites. Ceram. Engng Sci. Proc., 9(7–8) (1988) 705–722.

    Article  CAS  Google Scholar 

  2. Cooper, R.F. and Chyung, K., Structure and chemistry of fiber-matrix interfaces in SiC-reinforced glass-ceramic composites: An electron microscopy study. J. Mater. Sci., 27 (1987) 3148–3160.

    Article  Google Scholar 

  3. Kuntz, M., Meier, B. and Grathwohl, G., Residual stresses in fiber-reinforced ceramics due to thermal expansion mismatch. J. Am. Ceram. Soc., 76(10) (1992) 2607–2612.

    Article  Google Scholar 

  4. Chen, T., Dvorak, G.J. and Benveniste, Y., Thermal stresses in coated fiber composites. In Symposium on High Temperature Composites, Proceedings of the American Society for Composites (ed. Pagano, N.J.). Technomic Publishing Co. Inc. Lancaster, Pennsylvania, 1989, pp. 139–147.

    Google Scholar 

  5. Nakamura, T. and Suresh, S., Effects of thermal residual stresses and fiber packing on deformation of metal—matrix composites. Acta. Metall. Mater., 41(6) (1993) 1665–1681.

    Article  CAS  Google Scholar 

  6. Hsueh, C.-H., Becher, P.F. and Angelini, P. Effects of interfacial films on thermal stresses in whisker-reinforced ceramics. J. Am. Ceram. Soc., 71(11) (1988) 929–933.

    Article  CAS  Google Scholar 

  7. Sumanasiri, K.E.D. and van der Biest, O., Raman spectroscopy for internal stress measurements in ceramic fibre reinforced glass composites. Scripta Metall., 30 (1994) 79–82.

    Article  CAS  Google Scholar 

  8. Melanitis, N., Galiotis, C., Tetlow, P.L. and Davies, C.K.L., Interfacial shear stress distribution in model composites: The effect of fiber modulus. Composites, 24(6) (1993) 459–466.

    Article  CAS  Google Scholar 

  9. Hough, H., Demas, J., Williams, T.O. and Wadley, H.N.G., Luminescence sensing of stress in Ti/A1203 fiber reinforced composites. Acta. Metall. Mater., 43(2) (1995) 821–834.

    Article  CAS  Google Scholar 

  10. Ma, Q. and Clarke, D.R., Measurement of residual stresses in sapphire fiber composites using optical fluorescence. Acta. Metall. Mater., 41(6) (1993) 1817–1823.

    Article  CAS  Google Scholar 

  11. Ma, Q., Liang, L.C., Clarke, D.R. and Hutchinson, J.W., Mechanics of the push-out test from in-situ measurement of the stress distribution along embedded sapphire fibers. Acta. Metall. Mater., 42(10) (1994) 3299–3308.

    Article  CAS  Google Scholar 

  12. Cohen, J.B., The measurement of stresses in composites. Powder Diffr., 1(2) (1986) 15–21.

    CAS  Google Scholar 

  13. Krynicki, J.W., Nagle, D.C. and Green, R.E., Photoelastic measurement of residual thermomechanical stress in SiC-reinforced glass composites. J. Am. Ceram. Soc., 75(8) (1992) 2225–2231.

    Article  CAS  Google Scholar 

  14. Watson, M.C. and Clyne, T.W., The use of single-fiber push-out testing to explore interfacial mechanics in SiC monofilament-reinforced Ti: A photoelastic study of the test. Acta. Metall. Mater., 40(1) (1992) 131–139.

    Article  CAS  Google Scholar 

  15. Herrera-Franco, P.J. and Drzal, L.T., Comparison of methods for the measurement of fiber/matrix adhesion in composites. Composites 23(1) (1992) 2–27.

    Article  CAS  Google Scholar 

  16. Luh, E.Y. and Evans, A.G., High temperature mechanical properties of a ceramic matrix composite. J. Am. Ceram. Soc., 70(7) (1987) 466–469.

    Article  CAS  Google Scholar 

  17. Mackin, T.J. and Zok, F.W., Fiber bundle pushout: A technique for the measurement of interfacial sliding properties. J. Am. Ceram. Soc., 75(11) (1992) 3169–3171.

    Article  CAS  Google Scholar 

  18. Shafry, N., Brandon, D.G. and Terasaki, M., Interfacial friction and strength of aligned ceramic matrix composites. Euro-Ceramics, 3(3) (1989) 453–457.

    Google Scholar 

  19. Kawaga, Y. and Honda, K., A protrusion method for measuring fiber/matrix sliding frictional stresses in ceramic matrix composites. Ceram. Engng Sci. Proc., 12(7–8) (1991) 1127–1138.

    Article  Google Scholar 

  20. Carman, G.P., Lesko, J.J., Reifsneider, K.L. and Dilliar, D.A., Micromechanical model of composite materials subjected to ball indentation. J. Comp. Mater., 27(3) (1993) 303–329.

    Article  Google Scholar 

  21. Grande, D.H. and Mandell, J.F., Fiber-matrix bond studies of glass, ceramic and metal matrix composites. J. Mater. Sci., 23(1) (1988) 311–328.

    Article  CAS  Google Scholar 

  22. Marshall, D.B., An indentation method for measuring matrix-fiber frictional stresses in ceramic composites. J. Am. Ceram. Soc., 67(12) (1984) C259-260.

    Article  CAS  Google Scholar 

  23. Laughner, J.W., Shaw, N.J., Bhatt, R.T. and DiCarlo, J.A., Simple indentation method for measurement of interfacial shear strength in SiC/Si3N4 composites. Presented at the 10th Annual Conference on Composites and Advanced Ceramic Materials, American Ceramic Society, Cocoa Beach, FL, Jan. 1986.

    Google Scholar 

  24. Marshall, D.B. and Oliver, W.C., Measurement of interfacial mechanical properties in fiber-reinforced ceramic composites. J. Am. Ceram. Soc., 70(8) (1987) 542–548.

    Article  CAS  Google Scholar 

  25. Oliver, W.C. and Pharr, G.M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res., 7(6) (1992) 1564.

    Article  CAS  Google Scholar 

  26. Hsueh, C.-H., Ferber, M.K. and Becher, P.F., Stress-displacement relation of fiber for fiber-reinforced ceramic composites during (indentation) loading and unloading. J. Mater. Res., 4(6) (1989) 1529–1537.

    Article  CAS  Google Scholar 

  27. Bright, J.D., Shetty, D.K., Griffin, C.W. and Limaye, S.Y., Interfacial bonding and friction in SiC-reinforced ceramic and glass-matrix composites. J. Am. Ceram. Soc., 72(10) (1989) 1891–1898.

    Article  CAS  Google Scholar 

  28. Kelly, A. and Tyson, W.R., Tensile properties of fiber-reinforced metals: copper/tungsten and copper/molybdenum. J. Mech. Phys. Solids, 13(1965) 329–350.

    Article  CAS  Google Scholar 

  29. Watstein, D., Distribution of bond stress in concrete pull-out specimen. J. Am. Concrete Inst. Proc., 43 (1947) 1041.

    Google Scholar 

  30. Broutman, L. J., Measurement of fiber-matrix interfacial strength. In Interfaces in Composites (ASTM STP 452) (ed. Eakins, W.J.). ASTM, Philadelphia, PA, 1969, pp. 27–41.

    Chapter  Google Scholar 

  31. Deshmukh, U.V. and Coyle, T.W., Determination of the interface strength in glass-SiC composites via single-fiber tensile testing. Ceram. Engng Sci. Proc., 9(7–8) (1988) 627–634.

    Article  CAS  Google Scholar 

  32. Griffin, C.W., Limaye, S.Y., Richerson, D.W. and Shetty, D.K., Evaluation of interfacial properties in borosilicate-SiC composites using pull-out tests. Ceram. Engng Sci. Proc., 9(7–8) (1988) 671–678.

    Article  CAS  Google Scholar 

  33. Goettler, R.W. and Faber, K.T., Interfacial shear stresses in SiC and A12O3 fiber-reinforced glasses. Ceram. Engng Sci. Proc., 9(7–8) (1988) 861–870.

    Article  CAS  Google Scholar 

  34. Butler, E.P., Fuller, E.R. and Chan, H.M., Interface properties for ceramic composites from a single-fiber pull-out test. Mater. Res. Soc. Symp. Proc., 170 (1990) 17–24.

    Article  Google Scholar 

  35. Bright, J.D., Danchaivijit, S. and Shetty, D.K., Interfacial sliding friction in SiC-borosilicate glass composites: A comparison of pull-out and push-out tests. J. Am. Ceram. Soc., 74(1) (1991) 115–122.

    Article  CAS  Google Scholar 

  36. Chepolis, W. and Erturk, T., Fiber twist test: A new test technique to measure composite interface properties. Presented at the Symposium on Ceramic Matrix Composites and Advanced Structural Materials, The Materials Research Society, Boston, MA, 28 Nov. –2 Dec. 1994.

    Google Scholar 

  37. Lamon, J., Rebillat, F. and Evans, A.G., Microcomposite test procedure for evaluating the interface properties of ceramic matrix composites. J. Am. Ceram. Soc., 78(2) (1995) 401–405.

    Article  CAS  Google Scholar 

  38. Watson, M.C. and Clyne, T.W., The tensioned push-out test for fiber-matrix interface characterization under mixed mode loading. Mater. Sci. Engng A 160 (1993) 1.

    Article  Google Scholar 

  39. Cho, C., Holmes, J.W. and Barber, J.R., Estimation of interfacial shear in ceramic composites from frictional heating mechanisms. J. Am. Ceram. Soc., 74(11) (1991) 2802–2808.

    Article  CAS  Google Scholar 

  40. Beyerle, D.S., Spearing, S.M., Zok, F.W. and Evans, A.G., Damage and failure in unidirectional ceramic-matrix composites. J. Am. Ceram. Soc., 75(10) (1992) 2719–2729.

    Article  CAS  Google Scholar 

  41. Pryce, A.W. and Smith, P.A., Matrix cracking in unidirectional ceramic matrix composites under quasi-static and cyclic loading. Acta. Metall. Mater., 41(4) (1993) 1269–1281.

    Article  CAS  Google Scholar 

  42. Hsueh, C.-H., Slice compression test versus fiber push-in tests. J. Comp. Mater., 28(7) (1994) 638–655.

    Google Scholar 

  43. Hsueh, C.-H., Analysis of slice compression tests for aligned ceramic matrix composites. Acta. Metall. Mater., 41(12) (1995) 3585–3593.

    Google Scholar 

  44. Mumm, D.R. and Faber, K.T., Interfacial debonding and sliding in brittle-matrix composites measured using an improved fiber pullout technique. Acta. Metall. Mater., 43(3) (1995) 1259–1270.

    Article  CAS  Google Scholar 

  45. Marshall, D.B., Shaw, M.C. and Morris, W.L., Measurement of interfacial debonding and sliding resistance in fiber reinforced intermetallics. Acta. Metall. Mater., 40(3) (1992) 443–454.

    Article  CAS  Google Scholar 

  46. Curtin, W. A., Exact theory of fiber fragmentation in a singe-filament composite. J. Mater. Sci., 26(9) (1991) 5239–5253.

    Article  Google Scholar 

  47. Daoust, J., Khanh, T.V., Ahlstrom, C. and Gerard, J.F., A finite element model of the fragmentation test for the case of a coated fiber. Comp. Sci. Technol., 43 (1993) 143–149.

    Article  Google Scholar 

  48. Greszczuk, L.B., Theoretical studies of the mechanics of the fiber-matrix interface in composites. In Interfaces in Composites (ed. Eakins, W.J.) (ASTM STP 452). ASTM, Philadelphia, PA, 1969, pp. 42–58.

    Chapter  Google Scholar 

  49. Lawrence, P., Some theoretical considerations of fiber pull-out from an elastic matrix. J. Mater. Sci., 7 (1972) 1–6.

    Article  CAS  Google Scholar 

  50. Takaku, A. and Arridge, R.G.C., The effect of interfacial radial and shear stress on fiber pull-out in composite materials. J. Phys. D: Appl. Phys., 6 (1973) 2038–2047.

    Article  CAS  Google Scholar 

  51. Gray, R.J., Analysis of the effect of embedded fiber length on fiber debonding and pull-out from an elastic matrix. J. Mater. Sci., 19 (1984) 861–870.

    Article  Google Scholar 

  52. Shetty, D.K., Shear-lag analysis of fiber push-out tests for estimating interfacial friction stress in ceramic matrix composites. J. Am. Ceram. Soc., 71(2) (1988) C107–C109.

    Article  CAS  Google Scholar 

  53. Gao, Y.C., Mai, Y.W. and Cotterell, B., Fracture of fiber reinforced materials. ZAMP, 39(7) (1988) 550–572.

    Article  Google Scholar 

  54. Hutchinson, J.W. and Jensen, H.M., Models of fiber debonding and pullout in brittle composites with fricton. Mech. Mater., 9 (1990) 139–163.

    Article  Google Scholar 

  55. Kerans, R.J. and Parthasarathy, T.A., Theoretical analysis of the fiber pull-out and push-out tests. J. Am. Ceram. Soc., 74(7) (1991) 1585–1596.

    Article  CAS  Google Scholar 

  56. Marshall, D.B., Analysis of fiber debonding and sliding experiments in brittle matrix composites. Acta. Metall. Mater., 40(3) (1992) 427–441.

    Article  CAS  Google Scholar 

  57. Hsueh, C.-H., Evaluation of interfacial properties of fiber-reinforced ceramic composites using a mechanical properties microprobe. J. Am. Ceram. Soc., 76(12) (1993) 3042–3050.

    Article  Google Scholar 

  58. Liang, C. and Hutchinson, J.W., Mechanics of the fiber push-out test. Mech. Mater., 14 (1993) 207–221.

    Article  Google Scholar 

  59. Parthasarathy, T.A., Jero, P.D. and Kerans, R.J., Extraction of interface properties from fiber push-out test. Scripta Metall., 25 (1991) 2457–2462.

    Article  CAS  Google Scholar 

  60. Curtin, W.A., Eldridge, J.I. and Srinivasan, G.V., Push-out test on a new silicon carbide/reaction bonded silicon carbide ceramic matrix composite. J. Am. Ceram. Soc., 76(9) (1993) 2300–2304.

    Article  CAS  Google Scholar 

  61. Lara-Curzio, E., Ferber, M.K. and Lowden, R.A., The effect of fiber coating thickness on the interfacial properties of a continuous fiber-reinforced ceramic composite. Ceram. Engng Sci. Proc., 15(5) (1994) 989–1000.

    Article  CAS  Google Scholar 

  62. Lara-Curzio, E., Ferber, M.K., Besmann, T.M., Rebillat, F. and Lamon, J., Fiber-matrix bond strength, fiber frictional sliding and the macroscopic tensile behavior of a 2D SiC/SiC composite with tailored interfaces. Presented at the 19th Annual Cocoa Beach Conference and Exposition, Cocoa Beach, FL, 8–12 Jan. 1995.

    Google Scholar 

  63. Lara-Curzio, E. and Ferber, M.K., Methodology for the determination of the interfacial properties of brittle matrix composites. J. Mater. Sci., 29 (1994) 6152–6158.

    Article  CAS  Google Scholar 

  64. Jero, P.D., Staehler, J.M. and Kerans, R.J., Effect of moisture on interface properties in CMC’s. Presented at the Symposium on Ceramic Matrix Composites and Advanced Structural Materials, The Materials Research Society, Boston, MA, 28 Nov. –2 Dec. 1994.

    Google Scholar 

  65. Lara-Curzio, E., Oak Ridge National Laboratory, Oak Ridge, TN, unpublished results.

    Google Scholar 

  66. Wereszczak, A.A., Ferber, M.K. and Lowden, R.A., Development of an interfacial test system for the determination of interfacial properties in fiber-reinforced ceramic composites. Ceram. Engng Sci. Proc., 14(7) (1993) 156–167.

    Article  CAS  Google Scholar 

  67. Eldridge, J.I. and Ebihara, B.T., Fiber push-out testing apparatus for elevated temperatures. J. Mater. Res., 9(4) (1994) 1035–1042.

    Article  CAS  Google Scholar 

  68. Brun, M.K., Measurement of fiber/matrix interfacial shear stress at elevated temperatures. J. Am. Ceram. Soc., 75(7) (1992) 1914–1917.

    Article  CAS  Google Scholar 

  69. Rausch, G., Meier, B. and Grathwohl, G., A push-out technique for the evaluation of interfacial properties of fiber-reinforced materials. J. Euro. Ceram. Soc., 10 (1992) 229–235.

    Article  CAS  Google Scholar 

  70. Wang, H.-F., Nelson, J.C., Lin, C.-L. and Gerberich, W.W., Interfacial stability and mechanical properties of Al203 fiber reinforced Ti matrix composites. J. Mater. Res., 9(2) (1994) 498–503.

    Article  CAS  Google Scholar 

  71. Daniel, A.M., Smith, S.T. and Lewis, M.H., A scanning electron microscope based microindentation system. Rev. Sci. Instrum., 65(3) (1994) 632–638.

    Article  CAS  Google Scholar 

  72. Hsueh, C.-H., Interfacial debonding and fiber-pull-out stresses for fiber-reinforced composites. II: Non-constant interfacial bond strength. Mater. Sci. Engng A, 125 (1990) 67–73.

    Article  Google Scholar 

  73. Thouless, M.D., Frictional sliding and pull-out of fiber. Scripta Metall., 27 (1992) 1211–1214.

    Article  Google Scholar 

  74. Hsueh, C.-H., Bright, J.D. and Shetty, D.K., Interfacial properties of SiC-borosilicate glass composites evaluated from push-out and pull-out tests. J. Mater. Sci. Lett., 10 (1991) 135–138.

    Article  CAS  Google Scholar 

  75. Dollar, A. and Steif, P.S., Cohesive zone approach to intepreting the fiber push-out test. J. Am. Ceram. Soc., 76(4) (1993) 897–903.

    Article  CAS  Google Scholar 

  76. Jero, P.D. and Kerans, R.J., The contribution of interfacial roughness to sliding friction of ceramic fibers in a glass matrix. Scripta Metall., 24 (1990) 2315–2318.

    Article  CAS  Google Scholar 

  77. Kantzos, P., Eldridge, J.I., Koss, D. and Ghosn, L.J., The effect of fatigue on the interfacial friction properties of SCS-6/Ti-15-3 composites (NASA HiTemp Review 1991, Advanced High Temperature Engine Materials Technology Program, NASA TP 10082). NASA, 1991, 36.1–36.11.

    Google Scholar 

  78. Rouby, D. and Reynaud, P., Fatigue behavior related to interface modification during load cycling in ceramic-matrix fiber composites. Comp. Sci. Technol., 48 (1993) 109–118.

    Article  CAS  Google Scholar 

  79. Snead, L.L., Steiner, D. and Zinkle, S.J., Measurement of the effect of radiation damage to ceramic composite interfacial strength. J. Nucl. Mater., 191 (1992) 566–570.

    Google Scholar 

  80. Wang, S.-W., Khan, A., Sands, R. and Vasudevan, A.K., A novel indentation technique for measuring fiber-matrix interfacial strengths in composites. J. Mater. Sci. Lett., 11 (1992) 739–741.

    Article  CAS  Google Scholar 

  81. Kallas, M.N., Koss, D.A., Hahn, H.T. and Hellmann, J.R., Interfacial stress state present in a thin slice fiber push-out test. J. Mater. Sci., 27 (1992) 2381–2386.

    Article  Google Scholar 

  82. Cofer, C.G., Economy, J., Ferber, M.K. and Lara-Curzio, E., Evaluation of the interfacial mechanical properties of fiber-reinforced boron nitride-matrix composites. Ceram. Engng Sci. Proc., 15(4) (1994) 447–455.

    CAS  Google Scholar 

  83. Doerner, M.F. and Nix, W.D., A method for interpreting data from depth-sensing indentation instruments. J. Mater. Res., 1 (1986) 601.

    Article  Google Scholar 

  84. Ferber, M.K., Wereszczak, A.A., Hansen, D.H. and Homeny, J., Ealuation of interfacial mechanical properties in SiC fiber-reinforced macro-defect-free cement composites. Comp. Sci. Technol., 49 (1993) 23–33.

    Article  CAS  Google Scholar 

  85. Hsueh, C.-H. and Ferber, M.K., Evaluations of residual axial stresses and interfacial friction in nicalon fiber-reinforced macro-defect-free cement composites. J. Mater. Sci., 28 (1993) 2551–2556.

    Article  CAS  Google Scholar 

  86. Hsueh, C.-H., Ferber, M.K. and Wereszczak, A.A., The relative residual fiber displacement after indentation loading and unloading of fiber-reinforced ceramics. J. Mater. Sci., 28 (1993) 2227–2232.

    Article  CAS  Google Scholar 

  87. Marshall, D.B. and Oliver, W.C., An indentation method for measuring residual stresses in fiber-reinforced ceramics. Mater. Sci. Engng A, 126 (1990) 95–103.

    Article  Google Scholar 

  88. Ferber, M.K., Lara-Curzio, E., Russ, S. and Chawla, K.K., Single-fiber push-in vs. single-fiber push-out: A comparison between two test methods to determine the interfacial properties of brittle matrix composites. Presented at the Symposium on Ceramic Matrix Composites and Advanced Structural Materials, The Materials Research Society, Boston, MA, 28 Nov.–2 Dec. 1994.

    Google Scholar 

  89. Jero, P.D., Staehler, J.M., Parthasarathy, T.A. and Kerans, R.J., A comparison of the fiber push-in and push-out tests. Presented at the 19th Annual Cocoa Beach Conference and Exposition, Cocoa Beach, FL, 8–12 Jan. 1995.

    Google Scholar 

  90. Walls, H. and Jero, P.D., Effect of probe geometry on push-out test results in some SiC/borosilicate glass composites. Ceram. Engng Sci. Proc., 12(7–8) (1991) 1115–1126.

    Article  CAS  Google Scholar 

  91. Carter, W.C., Butler, E.P. and Fuller, E.R., Micromechanical aspects of asperity-controlled friction in fiber-toughened ceramic composites. Scripta Metall., 25 (1991) 579–584.

    Article  CAS  Google Scholar 

  92. Mackin, T.J., Yang, J. and Warren, P.D., Influence of fiber roughness on the sliding behavior of sapphire fibers in TiAl and glass matrices. J. Am. Ceram. Soc., 75(12) (1992) 3358–3362.

    Article  CAS  Google Scholar 

  93. Jero, P.D., Kerans, R.J. and Parthasarathy, T.A., Effect of interfacial roughness on the frictional stress measured using push-out tests. J. Am. Ceram. Soc., 74(11) (1991) 2793–2801.

    Article  CAS  Google Scholar 

  94. Mackin, T.J., Warren, P.D. and Evans, A.G., Effects of fiber roughness on interface sliding in composites. Acta. Metall. Mater., 40(6) (1992) 1251–1257.

    Article  CAS  Google Scholar 

  95. Sorensen, B.F., Effect of fiber roughness on the overall stress-transverse strain response of ceramic composites. Scripta Metall., 28 (1993) 435–439.

    Article  Google Scholar 

  96. Jero, P.D., Parthasarathy, T.A. and Kerans, R.J., Interface properties and their measurement with fiber push-out tests. In High Temperature Ceramic Matrix Composites (eds Naslain, R., Lamon, J. and Doumeingts, D.). Goodhead Publishers, Cambridge (1993) pp. 401–412.

    Google Scholar 

  97. More, K.L., Lara-Curzio, E. and Lowden, R.A., Characterization of the surface roughness of a variety of ceramic fibers using high resolution SEM and atomic force microscopy. Presented at the Symposium on Emerging Characterization Techniques, 96th Annual Meeting of the American Ceramic Society, Indianapolis, IN, 23–24 April 1994.

    Google Scholar 

  98. Chawla, K.K., Ferber, M.K., Xu, Z.R. and Venkatesh, R., Interface engineering in alumina/glass composites. Mater. Sci. Engng A, 162 (1993) 35–44.

    Article  Google Scholar 

  99. Liu, H.-Y., Zhou, L.-M. and Mai, Y.-W., On fibre pull-out with rough interface. Phil. Mag. A, 70(2) (1994) 359–372.

    Article  Google Scholar 

  100. Droillard, C., 2-D, SiC−SiC CVI composites with a (C−SiC) n multilayered interphase: processing, microstructure and tensile behavior at room temperature. PhD thesis, University of Bordeaux, 1993.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lara-Curzio, E., Ferber, M.K. (1996). Determination of interfacial properties and stresses in continuous fiber-reinforced ceramic composites by means of single-fiber indentation tests. In: Bull, J.W. (eds) Numerical Analysis and Modelling of Composite Materials. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0603-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0603-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4266-6

  • Online ISBN: 978-94-011-0603-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics