Skip to main content

Modeling of enhanced composite creep and plastic flow in temperature cycling

  • Chapter
Numerical Analysis and Modelling of Composite Materials
  • 403 Accesses

Abstract

It is commonly believed that new high temperature materials are critically needed to permit the production of several new aerospace and energy-related designs. Nickel-based superalloys have been well developed — such that their melting temperature places a fundamental limit on their utility at elevated temperature. Many avenues are being explored. Ceramics and intermetallics both offer much promise, but significant barriers exist in that damage tolerance must be significantly improved. One commonly suggested approach for increasing the use temperature (or possibly damage tolerance) of materials is to add a large volume fraction of a refractory material (i.e. make a composite). Many, many schemes have been suggested including both continuous and discontinuous as well as three-dimensional reinforcement schemes. Metals, ceramics and intermetallics have all been scrutinized as matrix materials, but the choice of reinforcement is usually ceramic. One obvious goal is to impart more refractory character to the material by adding a phase that is strong at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Padmanabhan, K.A. and Davies, G. J., Superplasticity. Springer-Verlag, Heidelberg, 1980, pp. 201–225.

    Book  Google Scholar 

  2. Edington, J.W., Melton, N.K. and Cutler, C.P., Prog. Mater. Sci., 21 (1976) 61–158.

    Article  CAS  Google Scholar 

  3. Johnson, R.H., Metall. Rev., 146 (1970) 115–134.

    Article  Google Scholar 

  4. Hon, S.H., Sherby, O.D., Divetcha, A.P., Karmarkar, S.D. and MacDonald, B.A., J. Comp. Mater., 22 (1988) 102–109.

    Article  Google Scholar 

  5. Clinard, F.W. and Sherby, O.D., Acta Metall., 12 (1964) 911–919.

    Article  CAS  Google Scholar 

  6. Gautier, E., Simon, A. and Beck, G., Acta Metall., 35 (1987) 1367–1375.

    Article  CAS  Google Scholar 

  7. Wu, M.Y. and Sherby, O.D., Scripta Metall., 18 (1984) 773–776.

    Article  CAS  Google Scholar 

  8. Kenobeevsky, S.T., Pravdyk, N.F. and Kutaistev, V.I., Paper no. 681, presented at the Geneva Conference on Atomic Energy, Geneva, Switzerland, 1955.

    Google Scholar 

  9. Kot, R.A. and Weiss, V., Metall. Trans., 1 (1970) 2685–2693.

    Google Scholar 

  10. Chen, Y.C., Daehn, G.S. and Wagoner, R.H., Scripta Metall., 24 (1990) 2157–2162.

    Article  CAS  Google Scholar 

  11. Le Flour, J.C. and Locicero, R., Scripta Metall., 21 (1987) 1071–1076.

    Article  Google Scholar 

  12. Lobb, R.C., Cykes, E.C. and Johnson, R.H., Met Sci., 6 (1972) 33–39.

    Article  CAS  Google Scholar 

  13. Wu, M.Y., Wadsworth, J. and Sherby, O.D., Metall. Trans. A, 18A (1987) 451–462.

    CAS  Google Scholar 

  14. Zegler, S.T., Mayfield, R.M. and Mueller, M.H., Trans. ASM, 50 (1958) 905–925.

    Google Scholar 

  15. Mayfield, R.M., Trans. ASM, 50 (1958) 926–942.

    Google Scholar 

  16. Burke, J.E. and Turkalo, A.M., Trans. ASM, 50 (1958) 943–953.

    Google Scholar 

  17. Lloyd, L.T. and Mayfeld, R.M., Trans. ASM 50 (1958) 954–980.

    Google Scholar 

  18. Boas, W. and Honeycombe, R.W.K., Proc. Royal Soc. London A, 186 (1946) 57–71.

    Article  CAS  Google Scholar 

  19. Honeycombe, R.W.K, Deformation in Metals. Edward Arnold, London, 1984, pp. 349–353.

    Google Scholar 

  20. Burke, J.E. and Turkalo, A.M., J. Met., 4 (1952) 651–665.

    CAS  Google Scholar 

  21. Pugh, S.F., J. Inst. Met., 86 (1957) 497–503.

    Google Scholar 

  22. Pickard, S.M. and Derby, B., Acta Metall., 38 (1990) 2537–2552.

    Article  CAS  Google Scholar 

  23. Daehn, G.S., Hebbar, K., Suh, Y.S. and Zhang, H., Comp. Engng, 3 (1993) 699–713.

    Article  CAS  Google Scholar 

  24. Daehn, G.S. and Gonzalez-Doncel, G., Metall. Trans. A, 20 (1989) 2355–2368.

    Article  Google Scholar 

  25. Dunand, D.C. and Derby, B., Fundamentals of Metal Matrix Composites (eds Suresh, S., Martensen, A. and Needleman, A.). Butterworth-Heinemann, Boston, 1993, pp. 191–216.

    Google Scholar 

  26. Clyne, T.W. and Withers, P.J., An Introduction to Metal Matrix Composites. Cambridge University Press, Cambridge, 1993, pp. 141–158.

    Book  Google Scholar 

  27. Daehn, G.S., Zhang, H., Chen, Y.C. and Wagoner, R.H., Modeling the Deformation of Crystalline Solids (eds Lowe, T.C., Rollett, A.P., Follansbee, P.S. and Daehn, G.S.). TMS, Warrendale, PA, 1991, pp. 665–678.

    Google Scholar 

  28. Krajewski, P.E., Allison, J.E. and Jones, J.W., Metall. Trans. A, 24 (1993) 2731–2741.

    Google Scholar 

  29. Bao, G., Hutchinson, J.W. and McMeeking, R.W., Acta Metall., 39 (1992) 1871–1882.

    Article  Google Scholar 

  30. Suresh, S. and Brockenbrough, J.R., Fundamentals of Metal Matrix Composites (eds Suresh, S., Martensen, A. and Neddleman, A.). Butterworth-Heinemann, Boston, 1993, pp. 174–190.

    Google Scholar 

  31. Wakashima, K., Kawakubo, T. and Umekawa, S., Metall. Trans. A, 6 (1975) 1775.

    Article  Google Scholar 

  32. Yoda, S., Takashi, R., Wakshima, K. and Umekawa, S., Metall. Trans. A, 10 (1979) 1796.

    Article  Google Scholar 

  33. Rosler, J., Bao, G. and Evans, A.E., Acta Metall., 39 (1991) 2733–2738.

    Article  Google Scholar 

  34. Fleck, N.A., Muller, G.M., Ashby, M.F. and Hutchinson, J.W., Acta Metall., 42 (1994) 475–487.

    Article  CAS  Google Scholar 

  35. Garmong, G., Metall. Trans., 5 (1974) 2183–2190.

    Article  CAS  Google Scholar 

  36. Garmong, G., Metall. Trans., 5 (1974) 2191–2197.

    Article  CAS  Google Scholar 

  37. Chen, Y.C. and Daehn, G.S., Scripta Metall., 25 (1991) 1543.

    Article  CAS  Google Scholar 

  38. Chen, Y.C. and Daehn, G.S., Metall. Trans. A, 22 (1991) 1113–1115.

    Article  Google Scholar 

  39. Miles, M., Daehn, G.S. and Wagoner, R.H., The Ohio State University, Columbus, OH, 1995.

    Google Scholar 

  40. Zhang, H., Daehn, G.S. and Wagoner, R.H., Scripta Metall., 24 (1990) 2151–2155.

    Article  CAS  Google Scholar 

  41. Zhang, H., Daehn, G.S. and Wagoner, R.H., Scripta Metall., 25 (1991) 2285–2290.

    Article  CAS  Google Scholar 

  42. Zhang, H., PhD thesis, The Ohio State University, Columbus, OH, 1991.

    Google Scholar 

  43. Daehn, G.S., Anderson, P.M. and Zhang, H., Scripta Metall., 25 (1991) 2279–2284.

    Article  CAS  Google Scholar 

  44. Zhang, H., Anderson, P.M. and Daehn, G.S., Metall. Trans. A, 25 (1994) 415–425.

    Article  Google Scholar 

  45. Elfishawy, K.F. and Daehn, G.S., Metall. Trans., 26A (1995).

    Google Scholar 

  46. Min, B.K. and Crossman, F.W., Composite Materials: Testing and Design, (ASTM STP 787) (ed. Daniel, I.M.). ASTM, Philadelphia, PA, 1987, pp. 371–392.

    Google Scholar 

  47. Tomkins, S.S. and Dries, G.A., Testing Technology of Metal Matrix Composites (ASTM STP 964). ASTM, Philadelphia, PA, 1988, pp. 248–258.

    Book  Google Scholar 

  48. Eshelby, J.D., chapter in Progress in Solid Mechanics (eds Sneddon, I.N. and Hill, R.). North-Holland Publishers, Amsterdam, 1961, pp. 89–140.

    Google Scholar 

  49. Yarish, S. and Daehn, G.S., The Ohio State University, Columbus, OH, 1995.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Daehn, G.S. (1996). Modeling of enhanced composite creep and plastic flow in temperature cycling. In: Bull, J.W. (eds) Numerical Analysis and Modelling of Composite Materials. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0603-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0603-0_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4266-6

  • Online ISBN: 978-94-011-0603-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics