Skip to main content

Introduction: The structure of fibres

  • Chapter
Chemistry of the Textiles Industry

Abstract

The specific chemistry of a given type of fibre is undeniably crucial in determining many features associated with its processing, performance and end-uses; but it may also be asserted that its physical structure — i.e. the organisation and geometrical arrangement of its component parts —is at least equal in importance. This accounts for the largely physical approach taken in the first chapter of a work devoted to the Chemistry of the Textiles Industry. The fact is that the two aspects cannot, and ought not to, be separated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abitz, W., Gerngross, O. and Herrmann, K. (1930) X-ray examination of gellatin micelles. Naturwiss. 18, 754–755.

    Article  CAS  Google Scholar 

  • Bailey, T.L.W. jun., Tripp, V.W., and Moore, A.T. (1963) Cotton and other vegetable fibres. In Fibre Structure (Eds J.W.S. Hearle and R.H. Peters), Butterworth & Co., London, pp. 422–454.

    Google Scholar 

  • Bamford, C.H. and Elliott, A. (1963) Synthetic polypeptides and fibrous proteins. In Fibre Structure (Eds J.W.S. Hearle and R.H. Peters), Butterworth & Co., London, pp. 46–110.

    Google Scholar 

  • Bunn, C.W. and Alcock, T.C. (1945) Texture of polythene. Trans. Faraday Soc, 41, 317–325.

    Article  CAS  Google Scholar 

  • Carothers, W.H. and Hill, J.W. (1932) Polymerization and ring formation. XI. Use of molecular evaporation as a means for propagating chemical reactions. J. Amer. Chem. Soc, 54, 1557–1559.

    Article  CAS  Google Scholar 

  • Fischer, E.W. (1958a) Disc. Faraday Soc, 25, 205.

    Google Scholar 

  • Fischer, E.W. (1958b) Oriented crystallization of polyethylene on sodium chloride. Kolloid-Z, 159, 108–118.

    Article  CAS  Google Scholar 

  • Frey-Wyssling, A. (1938) Submikroskopische Morphologie des Protoplasmas und seiner Derivate, Gebrüder Borntraeger, Berlin; revised and translated as Submicroscopic Morphology of Protoplasm (1st English edn 1948, 2nd English edn 1953), Elsevier, Amsterdam.

    Google Scholar 

  • Furness, V.I. (1963) Fibres from addition polymers. In Fibre Structure (Eds J.W.S. Hearle and R.H. Peters), Butterworth & Co, London, pp. 524–533.

    Google Scholar 

  • Gerngross, O, Herrmann, K. and Abitz, W. (1930) Fine structure of gelatin micelles. Biochem. Z, 228, 409–425.

    CAS  Google Scholar 

  • Goodman, I. (1963) Synthetic fibre-forming polymers and co-polymers. In Fibre Structure (Eds J.W.S. Hearle and R.H. Peters), Butterworth & Co., London, pp. 111–180.

    Google Scholar 

  • Hearle, J.W.S. (1958) Fringed-fibril theory of structure in crystalline polymers. J. Polymer Sci, 28, 432–435.

    Article  CAS  Google Scholar 

  • Hearle, J.W.S. (1963) Structure, properties, and uses. In Fibre Structure (Eds J.W.S. Hearle and R.H. Peters), Butterworth & Co., London, p. 621.

    Google Scholar 

  • Hearle, J.W.S. (1977) On structure and thermomechanical responses of fibres, and the concept of a dynamic crystalline gel as a separate thermodynamic state. J. Appl. Polym. Sci.: Applied Polymer Symposia, 31, 137–161.

    CAS  Google Scholar 

  • Hearle, J.W.S. (1991) Understanding and control of textile fiber structure. J. Appl. Polym. Sci.: Applied Polymer Symposia, 47, 1–31.

    Article  CAS  Google Scholar 

  • Hearle, J.W.S. and Greer, R. (1971) Fibre structure. Textile Progress, 2(4), 53.

    Google Scholar 

  • Hearle, J.W.S. and Peters, R.H. (eds) (1963) Fibre Structure, Butterworth & Co., London.

    Google Scholar 

  • Hearle, J.W.S., Prakash, R. and Wilding, M.A. (1987) Prediction of mechanical properties of nylon and polyester fibres as composites. Polymer, 28, 441–448.

    Article  CAS  Google Scholar 

  • Hearle, J.W.S., Prakash, R., Wilding, M.A. and Davis, H.A. (1988) The structural mechanics of nylon and polyester fibres: Approaches to theoretical understanding. In Integration of Fundamental Polymer Science and Technology - 2, (Eds P.J. Lemstra and L.A. Kleintjens), Elsevier, London, pp. 540–544.

    Chapter  Google Scholar 

  • Hess, K. and Keissig, H. (1944) Long-period interferences and micelle fiber — fine structure of synthetic polymers (polyamides and polyesters). Z. physik. Chem, A193, 196–217.

    Google Scholar 

  • Hess, K., Mahl, H. and Gütter, E. (1957) Electron microscopic representation of long periodic intervals in cellulose fibers and comparison with the periods of other kinds of fibers. Kolloid-Z, 155, 1–19.

    Article  CAS  Google Scholar 

  • Hosemann, R. (1950a) Röntgen interferences in materials with lattice perturbations obeying liquid statistics. Z. Phys, 128, 1–35.

    Article  CAS  Google Scholar 

  • Hosemann, R. (1950b) Ideal paracrystal and the coherent Röntgen radiation scattered by it. Z. Phys, 128, 465–492.

    Article  CAS  Google Scholar 

  • Hosemann, R. (1962) Crystallinity in high polymers, especially fibers. Polymer, 3, 349–392.

    Article  CAS  Google Scholar 

  • Kargin, V.A. (1958) Structure and phase state of polymers. J. Polymer Sci, 30, 247–258.

    Article  CAS  Google Scholar 

  • Keller, A. (1957) Single crystals in polymers: Evidence of a folded chain configuration. Phil. Mag, 2, 1171–1175.

    Article  CAS  Google Scholar 

  • Keller, A. (1963) The Crystallinity of High Polymers. In Fibre Structure (Eds J.W.S. Hearle and R.H. Peters), Butterworth & Co., London, pp. 332–390.

    Google Scholar 

  • Kratky, O. and Mark, H. (1937) Individual cellulose micelles. Z. physik. Chem, B36, 129–139.

    CAS  Google Scholar 

  • Lewin, M. and Preston, J. (eds) (1985,1989) High Technology Fibers, Parts A and B, International Fiber Science and Technology Series, (ISSN 0570–4898), Marcel Dekker Inc., New York.

    Google Scholar 

  • Lewis, D.M. (ed.) (1992) Wool Dyeing, The Society of Dyers and Colourists, Bradford.

    Google Scholar 

  • Mikhailov, N.V. (1958) On the phase structure of cellulose. J. Polymer Sci, 30, 259–269.

    Article  CAS  Google Scholar 

  • Morton, W.E. and Hearle, J.W.S. (1975) Physical Properties of Textile Fibres, 2nd edn, Textile Institute and William Heinemann, London, pp. 32–38.

    Google Scholar 

  • Mukhopadhyay, S.K. (ed.) (1992) Advances in Fibre Science, The Textile Institute, Manchester, and Hobbs Ltd., Southampton.

    Google Scholar 

  • Nägeli, C. (1928) Micellartheorie. Original papers reprinted as Oswalds Klassiker, No. 227 (Ed. A. Frey), Leipzig.

    Google Scholar 

  • Neale, S.M. (1933) The modification of natural cotton cellulose by swelling and by degradation. Trans. Faraday Soc, 29, 228–238.

    Article  CAS  Google Scholar 

  • Peterlin, A. (1971) Molecular model of drawing polyethylene and polypropylene. J. Mater. Sci, 6, 490–508.

    Article  CAS  Google Scholar 

  • Prevorsek, D.C., Harget, P.J., Sharma, R.K. and Reimschuessel, A.C. (1973) Nylon 6 fibers: changes in structure between moderate and high draw ratios. J. Macromol. Sci, B-8,127–156.

    Google Scholar 

  • Sharpies, A. (1963) Cellulose and its derivatives. In Fibre Structure (Eds J.W.S. Hearle and R.H. Peters), Butterworth & Co., London, pp. 21–45.

    Google Scholar 

  • Staudinger, H. (1932) Die hochmolekularen Organischen Verbindungen, Springer-Verlag, Berlin. Takayanagi, M. (1964) Viscoelastic behaviour of crystalline polymers. Kautschuk Gummi

    Book  Google Scholar 

  • Takayanagi, M. (1964) Viscoelastic behaviour of crystalline pokymers.Kautschuk Gummi, Kunststoffe, Plastomere, Elastomere, Duromere, 17, 164–173.

    Google Scholar 

  • The Textile Institute (1960) Textile Terms and Definitions, 4th edn, The Textile Institute, Manchester, p. 65.

    Google Scholar 

  • Till, P.H. (1957) Growth of single crystals of polyethylene, J. Polymer. Sci, 24, 301–306.

    Article  CAS  Google Scholar 

  • Ward, I.M. and Wilding, M.A. (1984) Creep behaviour of ultra-high modulus polyethylene: Influence of draw ratio and polymer composition. J. Polymer Sci., Phys. Ed, 22, 561–575.

    Article  CAS  Google Scholar 

  • Wilding, M.A. and Ward, I.M. (1978) Tensile creep and recovery in ultra-high modulus linear polyethylenes. Polymer, 19, 969–976.

    Article  CAS  Google Scholar 

  • Wilding, M.A. and Ward, I.M. (1981) Creep and recovery of ultra-high modulus polyethylene. Polymer, 22, 870–876.

    Article  CAS  Google Scholar 

  • Wilding, M.A. and Ward, I.M. (1984) The creep and stress-relaxation in ultra-high modulus linear polyethylene. J. Materials Sci, 19(2), 629–636.

    Article  CAS  Google Scholar 

  • Wilfgong, R.E. and Zimmerman, J. (1977) Strength and durability characteristics of Kevlar aramid fiber. In Fiber Science (Ed. M. Lewin), International Fiber Science and Technology Series (ISSN 0570-4898), Marcel Dekker Inc., New York, pp. 1–21.

    Google Scholar 

  • Wooding, N.S. (1963) Rayon and acetate fibres. In Fibre Structure (Eds J.W.S. Hearle and R.H. Peters), Butterworth & Co., London, pp. 455–479.

    Google Scholar 

  • Woods, H.J. (1955) Physics of Fibres, The Institute of Physics and John Wright & Sons, Bristol.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wilding, M.A. (1995). Introduction: The structure of fibres. In: Carr, C.M. (eds) Chemistry of the Textiles Industry. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0595-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0595-8_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4264-2

  • Online ISBN: 978-94-011-0595-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics