Skip to main content

Mechanical testing of high-temperature materials: modelling data-scatter

  • Chapter
High-temperature Structural Materials

Abstract

Scatter in mechanical property data of a metallic alloy derives from two sources: a variable microstructure or an inadequate and sometimes badly executed test method. A quantified example of each source of scatter is given in this paper by examining two important high-temperature properties: uniaxial tensile creep and low-cycle fatigue. Creep-lifetime data of engineering alloys often show scatter-bands much greater than can be accounted for on the basis of well-understood physics of testing-induced scatter. Bounds to this material-induced scatter have been computed for a low-alloy ferritic steel dataset using a physically based creep model incorporating damage state variables. High-temperature low-cycle fatigue demands a more complicated test procedure than does steady-load creep and the large interlaboratory scatter found in recent round robin data from 26 laboratories in Europe and Japan has highlighted inadequacies in the standardized test method. A simple material model and fracture criterion has been used, in conjunction with a previously introduced testpiece-bending model, to predict testing-induced interlaboratory scatter for the two nickel-base superalloys reported upon in the round robin exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashby, M. F. 1989 Materials selection in conceptual design. In Materials and engineering design (ed. B. F. Dyson & D. R. Hayhurst), Part I, ch. 2, London: Institute of Metals

    Google Scholar 

  • Ashby, M. F. 1991 Materials and shape. Acta metall. Mater. 39,1025–1039.

    Article  Google Scholar 

  • ASTM Standard E606–80 1980 Standard recommended practice for constant-amplitude low-cycle fatigue testing. 1991 Annual Book of ASTM Standards,Part 3.01, pp. 609–621, Philadelphia, PA: American Society for Testing and Materials.

    Google Scholar 

  • Dyson, B. F. & Osgerby, S. 1993 Modelling and analysis of creep deformation and fracture in a 1Cr1/2Mo ferritic steel. NPL Rep. DMM(A)116

    Google Scholar 

  • Dyson, B. F., Loveday, M. S. & Gee, M. G. 1995 Materials metrology and standards: an introduction. In Materials metrology and standards for structural performance (ed. B. F. Dyson, M. S. Loveday & M. G. Gee), ch. 1. London: Chapman and Hall.

    Chapter  Google Scholar 

  • Dyson, B. F. & McLean, M. 1990 Creep deformation of engineering alloys: developments from physical modelling. ISIJ Int. 30, 802–811.

    Article  CAS  Google Scholar 

  • Gould, D. & Loveday, M. S. 1992 A reference material for creep testing. In Harmonisation of testing practice for high temperature materials (ed. M. S. Loveday & T. B. Gibbons), ch. 6. London: Elsevier Applied Science.

    Google Scholar 

  • Henderson, W. T. K. & Thomas, G. B. 1995 Accredited testing and reference materials. In Materials metrology and standards for structural performance (ed. B. F. Dyson, M. S. Loveday & M. G. Gee), ch. 10. London: Chapman and Hall.

    Google Scholar 

  • Hossain, M. K. & Sced, I. R. 1995 Metrology for engineering materials. In Materials metrology and standards for structural performance (ed. B. F. Dyson, M. S. Loveday & M. G. Gee), ch. 9. London: Chapman and Hall.

    Google Scholar 

  • Kandil, F. A. & Dyson, B. F. 1993a The influence of load misalignment during uniaxial low cycle fatigue testing. I. Modelling. Fatigue Fract. Engng Mater. Struct. 16, 509–527.

    Article  Google Scholar 

  • Kandil, F. A. & Dyson, B. F. 1993b The influence of load misalignment during uniaxial low cycle fatigue testing. II. Applications. Fatigue Fract. Engng Mater. Struct. 16, 529–537.

    Article  CAS  Google Scholar 

  • Lifshitz, J. M. & Slyozov, V. V. 1961 J. Phys. Chem. Solids 19, 35–50.

    Article  Google Scholar 

  • Lin, J., Hayhurst, D. R. & Dyson, B. F. 1993a The standard uniaxial testpiece: computed accuracy of creep strain. J. Strain Analysis 28(1), 20–34.

    Google Scholar 

  • Lin, J., Hayhurst, D. R. & Dyson, B. F. 1993b A new design of uniaxial creep testpiece with slit extensometer ridges for improved accuracy of strain measurement. Int. J. Mech. Sci. 35(1), 63–78.

    Article  Google Scholar 

  • Loveday, M. S. 1992 Towards a tensile reference material. In Harmonisation of testing practice for high temperature materials (ed. M. S. Loveday & T. B. Gibbons), ch. 7. London: Elsevier Applied Science.

    Google Scholar 

  • Manson, S. S. & Haferd, A. M. 1953 A linear time-temperature relation for extrapolation of creep and stress rupture data. Nat. Advisory Committee Aeronautics Tech. Note 2890.

    Google Scholar 

  • McLean, M., Dyson, B. F & Ghosh, R. N. 1991 Recent evolution of gas turbine materials and the development of models for life prediction. In Mechanical behaviour of materials. VI (ed. M. Jono & T. Inoue), vol. 12, pp. 49–58. Pergamon Press.

    Google Scholar 

  • Tavernelli, J. F. & Coffin, L. F. 1959 A compilation and interpretation of cyclic strain fatigue tests on metals. Trans ASM 51, 438–453.

    Google Scholar 

  • Thomas, G. B., Hales, R, Ramsdale, J., Suhr, R. W. & Sumner, G. A. 1989_A code of practice for constant-amplitude low cycle fatigue testing at elevated temperature. Fatigue Fract. Engng Mater. Struct. 12, 135–153.

    Article  Google Scholar 

  • Thomas, G. B. & Varma, R. K. 1992 Review of the BCR/VAMAS low cycle fatigue intercomparison programme In Harmonisation of testing practice for high temperature materials (ed. M. S. Loveday & T. B. Gibbons), ch. 8. London: Elsevier Applied Science.

    Google Scholar 

  • Toft, L. H. & Marsden, R. A. 1961 The structure and properties of 1Cr1/2Mo steel after service in CEGB power stations. In Structural processes in creep, 276–294. London: Institute of Metals.

    Google Scholar 

Download references

Authors

Editor information

R. W. Cahn A. G. Evans M. McLean

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dyson, B.F. (1996). Mechanical testing of high-temperature materials: modelling data-scatter. In: Cahn, R.W., Evans, A.G., McLean, M. (eds) High-temperature Structural Materials. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0589-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0589-7_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4261-1

  • Online ISBN: 978-94-011-0589-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics