Skip to main content

Stomatal responses to environmental factors

  • Chapter
Stomata

Abstract

Stomata are situated in the leaf surface where they are best positioned to control the influx and efflux of gases between the interior of a leaf and its environment. Furthermore, guard cells are usually only connected to neighbouring cells via their dorsal walls, and, at maturity, these walls do not possess functional plasmodesmata (see Chapter 3). Thus, because of their relative isolation from the rest of the plant body, stomata are ideally suited for sensing and responding to environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allerup, S. (1961) Stem cutting and water movement in young barley plants.Physiol. Plant., 14, 632–637.

    Article  CAS  Google Scholar 

  • Andersen, M.N, Jensen, C.R. and Lösch, R. (1992) The interaction effects of potassium application and drought in field grown barley. II. Nutrient relations, tissue water content and morphological develop- ment. Acta Agric. Scand., 42, 45–56.

    CAS  Google Scholar 

  • Aphalo, P.J. and Jarvis, P.G. (1991) Do stomata respond to relative humidity? Plant Cell Environ., 14, 127–132.

    Article  Google Scholar 

  • Appleby, R.F. and Davies, W.J. (1983) The structure and orientation of guard cells in plants showing stomatal responses to changing vapour pressure difference. Ann. Bot., 52, 459–468.

    Google Scholar 

  • Assmann, S.M. (1988) Enhancement of the stomatal response to blue light by red light, reduced intercellular concentrations of CO2, and low vapour pressure differences. i., 87, 226–231.

    Article  PubMed  CAS  Google Scholar 

  • Assmann, S.M. (1993) Signal transduction in guard cells. Ann. Rev. Cell Biol., 9, 345–375.

    Article  PubMed  CAS  Google Scholar 

  • Assmann, S.M. and Grantz, D.A. (1990) The magnitude of the stomatal response to blue light. Plant Physiol., 93, 701–709.

    Article  PubMed  CAS  Google Scholar 

  • Bauer, H. (1979) Photosynthesis of ivy leaves (Hedera helix L.) after heat stresss III. Stomatal behaviour. Z. Pflanz., 92, 277–284.

    CAS  Google Scholar 

  • Beckman, C.H., Brun, WH. and Buddenhagen, I.W (1962) Water relations in banana plants infected with Pseudomonas solanacearum. Phytopathology, 52, 1144–1148.

    CAS  Google Scholar 

  • Berryman, C.A., Eamus, D. and Farrar, J.F. (1991a) Water relations of leaves of barley infected with brown rust. Physiol. Plant Pathol., 38, 393–405.

    Article  Google Scholar 

  • Berryman, C.A., Eamus, D. and Farrar, J.F. (1991b) The hydraulic conduc- tivity of roots of rust-infected barley seedlings. Physiol Plant Pathol., 38, 407–415.

    Article  Google Scholar 

  • Berryman, C.A., Eamus, D. and Farrar, J.F. (1991c) Variation in epidermal cell turgor of rust-infected barley seedlings. New Phytol., 119, 535–540.

    Article  Google Scholar 

  • Berryman, C.A., Eamus, D. and Duff, G.A. (1994) Stomatal responses to a range of variables in two tropical tree species grown with CO2 enrich- ment.J. Exp. Bot., 45, 539–546.

    Article  CAS  Google Scholar 

  • Black, C.R. and Black, V.J. (1979) The effects of low concentrations of sul- phur dioxide on stomatal conductance and epidermal cell survival in field bean (Vicia faba L.).J. Exp. Bot., 30, 291–298.

    Article  CAS  Google Scholar 

  • Bonte J. and Longuet, P. (1975) Interrelations entre la pollution par le dioxyde de soufre et le mouvement des stomates chez le Pelargonium hortorum: effets de l‘humidite relative et de la teneur en gaz car- bonique de l’air. Physiol. Vèg, 13, 527–537.

    CAS  Google Scholar 

  • Bowden, R.L. and Rouse, D.I. (1991) Effects of Verticillium dahliae on gas exchange of potato. Phytopathology, 81, 293–301.

    Article  Google Scholar 

  • Boyer, J.S. (1976) Photosynthesis at low water potentials. Phil. Trans. Roy. Soc. Lond., Ser. B, 273, 501–512.

    Article  Google Scholar 

  • Boyer, J.S. (1985) Water transport. Ann. Rev. Plant Physiol., 36, 473–516.

    Article  Google Scholar 

  • Bradbury, I.K. and Malcolm, D.C. (1977) The effect of phosphorus and potassium on transpiration, leaf diffusive resistance and water use effi- ciency in Sitka spruce (Picea sitchensis) seedlings. J Appl. Ecol., 14, 631–642.

    Article  CAS  Google Scholar 

  • Brag, H. (1972) The influence of potassium on the transpiration rate and stomatal opening in Triticum aestivum and P. sativum. Physiol. Plant., 26, 250–257.

    CAS  Google Scholar 

  • Brun, WA. (1965) Rapid changes in transpiration in banana leaves. i., 40, 797–802.

    Article  PubMed  CAS  Google Scholar 

  • Burnett, J.H. (1976) In: Fundamentals of Mycology, (ed. J.H. Burnett), Edward Arnold and Crane Russak, London.

    Google Scholar 

  • Canny, M.J. (1990) What becomes of the transpiration stream? New Phytol., 114, 341–368.

    Article  Google Scholar 

  • Capron, T.M. and Mansfield, T.A. (1976) Inhibition of net photosynthesis in tomato in air polluted with NO and NO2. J. Exp. Bot., 101, 1181–1186.

    Article  Google Scholar 

  • Cockburn, W., Ting, I. P. and Sternberg, L. O. (1979) Relationships between stomatal behaviour and internal carbon dioxide concentrationin crassulacean acid metabolism plants. Plant Physiol., 63, 1029–1032.

    Article  PubMed  CAS  Google Scholar 

  • Constable, G.A. and Rawson, H.M. (1980) Effect of leaf position, expan- sion, and age on photosynthesis, transpiration and water use effi- ciency of cotton. Aust. J. Plant Physiol., 7, 89–100.

    Article  Google Scholar 

  • Contour-Ansel, D. and Louguet, R (1985) Short-term effect of light on phenolic compounds in isolated leaf epidermis of Pelargonium hor- torum.J. Plant Physiol., 120, 223–231.

    Article  CAS  Google Scholar 

  • Coutinho, T.A., Rijkenberg, F.H.J. and van Asch, M.A.J. (1993) Development of infection structures by Hemileia vastatrix in resis- tant and susceptible selections of Coffea and in Phaseolus vulgaris. Can. J. Bot., 1001-1008.

    Google Scholar 

  • Cowan, I.R. (1977) Stomatal behaviour and environment. Adv. Bot. Res., 4, 117–229

    Article  Google Scholar 

  • Cowan, I.R. and Farqhuar, G.D. (1977) Stomatal function in relation to leaf metabolism and environment. Soc. Exp. Biol. Symp., 31, 471–505.

    CAS  Google Scholar 

  • Darwin, F. (1897) Observations on stomata by a new method. Proc. Cambridge Phil. Soc., 9, 303–308.

    Google Scholar 

  • Darwin, F. (1898) Observations on stomata. Phil. Trans. Roy. Soc. Lond., Ser. B, 190, 531–621.

    Article  Google Scholar 

  • Davies, T. (1980) Grasses more sensitive to SO2 pollution in conditions of low irradiance and short days. Nature, 284, 483–485.

    Article  CAS  Google Scholar 

  • Davies, W.J., Wilson, J.A., Sharpe, R.E. and Osonubi, O. (1981) Control of stomatal behaviour in water-stressed plants, in Stomatal Physiology, (eds P.G. Jarvis and T.A. Mansfield), Cambridge University Press, Cambridge, pp. 163-185.

    Google Scholar 

  • Davis, S.D. and McCree, K.J. (1978) Photosynthetic rate and diffusion conductance as a function of age in leaves of bush bean (Phaseolus vulgaris L.). Crop Sci., 18, 280-282.

    Article  CAS  Google Scholar 

  • Desai, M.C. (1937) Effects of certain nutrient deficiencies on stomatal behaviour. Plant Physiol., 12, 253–281.

    Article  PubMed  CAS  Google Scholar 

  • Dietzer, G.F. and Frosch, S.H. (1990) Multiple action of far-red light in photoperiodic induction and circadian rhythmicity. Photochem. Photobiol., 52, 173–179.

    Article  Google Scholar 

  • Drake, B. and Raschke, K. (1974) Pre-chilling of Xanthium strumarium L reduces net photosynthesis and independently, stomatal conduc- tance, while sensitizing the stomata to CO2. Plant Physiol., 53, 808–812.

    Article  PubMed  CAS  Google Scholar 

  • Drew, A.P. and Bazzaz, F.A. (1979) Response of stomatal resistance and photosynthesis to night temperature in Populus deltoides. Oecologia, 41, 89–98.

    Article  Google Scholar 

  • Drew, A.P. and Bazzaz, F.A. (1982) Effect of night temperature on day- time stomatal conductance in early and late successional plants. Oecologia, 54, 76–79.

    Article  Google Scholar 

  • Duniway, J.M. (1976) Water status and imbalance, in Encyclopedia of Plant Physiology, Vol. 4, Physiological Plant Pathology, (eds R. Heitefuss and P. H. Williams), Springer, Berlin.

    Google Scholar 

  • Eamus, D. and Murray, M. (1991) Photosynthetic and stomatal conduc- tance responses of Norway spruce and beech to ozone, acid mist and frost - a conceptual model. Environ. Pollut., , 72, 23-44.

    Article  PubMed  CAS  Google Scholar 

  • Eamus, D., Fenton, R. and Wilson, J.M. (1983) Stomatal behaviour and water relations of chilled Phaseolus vulgaris L. and Pisum sativum L. J. Exp. Bot., 34, 434-441.

    Article  Google Scholar 

  • Eamus, D., Barnes, J.D., Mortensen, L. et al. (1990) Persistent stimula- tion of CO2 assimilation and stomatal conductance by summer ozone fumigation in Norway spruce. Environ. Pollut., 63, 365–379.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, M.C. and Bowling, D.J.F. (1986) The growth of rust germ tubes towards stomata in relation to pH gradients. Physiol., Mol. Plant Pathol., 29, 185–196.

    Article  Google Scholar 

  • Edwards, M. and Meidner, H. (1978) Stomatal responses to humidity and the water potentials of epidermal and mesophyll tissue, J. Exp. Bot., 29, 771–780.

    Article  Google Scholar 

  • Englee, R.L. and Gabelman, W.H. (1966) Inheritance and mechanism for resistance to ozone damage in onion Allium cepa L. Proc. Am. Soc. Hort. Sci., 89, 423–430.

    Google Scholar 

  • Evans, L.T. and Allaway, W.G. (1972) Action spectrum for the opening of Albizzia julibrissin pinnules and the role of phytochrome in the clos- ing movements of pinnules and of stomata of Vicia faba. Aust. J. Biol. Sci., 25,885–93.

    CAS  Google Scholar 

  • Farquhar, G.D. (1978) Feedforward responses of stomata to humidity. Aust. J. Plant Physiol., 5, 787-800.

    Article  Google Scholar 

  • Field, C.B. (1987) Leaf-age effects on stomatal conductance, in Stomatal Function, (eds E. Zeiger, G.D. Farquhar and I.R. Cowan), Stanford University Press, Stanford, CA, pp. 365–384.

    Google Scholar 

  • Fitzsimons, P.J. and Weyers, J.D.B. (1983) Separation and purification of protoplast types from Commelina communis L. leaf epidermis. J. Exp. Bot., 34, 55–66.

    Article  CAS  Google Scholar 

  • Fitzsimons, P.J. and Weyers, J.D.B. (1986) Volume changes of Commelina communis L. guard cell protoplasts in response to K+, light and CO2. Physiol. Plant., 66, 463-468.

    Article  CAS  Google Scholar 

  • Gorton, H.L., Williams, W.E., Binns, M.E. et al. (1989) Circadian stomatal rhythms in epidermal peels from Vicia faba. Plant Physiol., 90, 1329–1334.

    Article  PubMed  CAS  Google Scholar 

  • Gotow, K., Kondo, N. and Syono, K. (1982) Effects of CO2 on volume changes of guard cell protoplasts from Vicia faba L. Plant Cell Physiol., 23, 1063–1070.

    Google Scholar 

  • Grantz. D.A. (1990) Plant responses to atmospheric humidity. Plant Cell Environ., 13, 667–679.

    Article  Google Scholar 

  • Grantz, D.A. and Schwartz, A. (1988) Guard cells of Commelina commu- nis L. do not respond metabolically to osmotic stress in isolated epi- dermis: implications for stomatal responses to drought and humidity. Planta, 174, 166–173.

    Article  Google Scholar 

  • Habermann, H. M. (1973) Evidence for two photoreactions and possible involvement of phytochrome in light-dependent stomatal opening. Plant Physiol, 51, 543–548.

    Article  PubMed  CAS  Google Scholar 

  • Hall, A.E. and Kaufmann, M.R. (1975) Stomatal responses to environment with Sesamum indicum L. Plant Physiol., 55, 455–459.

    Article  PubMed  CAS  Google Scholar 

  • Hall, A.E., Camacho, B. and Kaufmann, M.R. (1975) Regulation of water loss by citrus leaves. Physiol. Plant., 33, 62–65.

    Article  Google Scholar 

  • Heath, O.V.S. (1963) Rapid changes in transpiration in plants. Nature, 200, 190–191.

    Article  Google Scholar 

  • Heath, O.V.S. and Russell, J. (1954) Studies in stomatal behaviour. VI. An investigation of the light responses of wheat stomata with the attempted elimination of control by the mesophyll. Part II.J. Exp. Bot., 5, 269–292.

    Article  CAS  Google Scholar 

  • Heber, U., Neimanis, S. and Lange, O.L. (1986) Stomatal aperture, photo- synthesis and water fluxes in mesophyll cells as affected by the abscis- sion of leaves. Simultaneous measurements of gas exchange, light scattering and chlorophyll fluorescence. Planta, 167, 554-562.

    Article  CAS  Google Scholar 

  • Heller, F.-O., Kausch, W. and Trapp, L. (1971) UV-mikroskopischer Nachweis von Strukturanderungen in Schliesszellen von Vicia faba L. Naturwissenschaften, 58, 419.

    Article  Google Scholar 

  • Hennessey, T.L., Freeden, A.L. and Field, C.B. (1993) Environmental effects on circadian rhythms in photosynthesis and stomatal opening. Planta, 189, 369–376.

    Article  CAS  Google Scholar 

  • Hollinger, D.Y (1987) Gas exchange and dry matter allocation responses to elevation of atmospheric CO2 concentration in seedlings of three tree species. i., 3, 192–202.

    Article  Google Scholar 

  • Holmes, M.G. and Klein, W.H. (1985) Evidence for phytochrome involve- ment in light-mediated stomatal movements in Phaseolus vulgaris L. Planta, 166, 348–353.

    Article  CAS  Google Scholar 

  • Honour, S.J, Webb, A.A.R. and Mansfield, T.A. (1994) The responses of stomata to abscisic acid and temperature are interrelated. Proc. Roy. Soc. Lond., Ser B, in press.

    Google Scholar 

  • Hopmans, P.A.M. (1971) Rhythms in stomatal opening of bean leaves. Meded. Landbouwhogeschool Wageningen, 71, 1–86.

    Google Scholar 

  • Hsiao, T.C., Allaway, W.G. and Evans, L.Y. (1973) Action spectra for guard cell Rb+ uptake and stomatal opening in Vicia faba. Plant Physiol., 51, 82–88.

    Article  PubMed  CAS  Google Scholar 

  • Iino, M., Ogawa, T. and Zeiger, E. (1985) Kinetic properties of the blue light response of stomata. Proc. Natl. Acad. Sci. USA, 82, 8019–8023.

    Article  PubMed  CAS  Google Scholar 

  • Iwanoff, L. (1928) Zur Methodik der Transpirations-bestimmung am Standort. Ber. Deutsch. Bot. Ges., 46, 306–310.

    Google Scholar 

  • Jarvis, P.G. (1993) Water losses of crowns, canopies and communities, in Water Deficits, (eds J.A.C. Smith and H. Griffiths), BIOS Scientific, Oxford, pp. 285-315.

    Google Scholar 

  • Jarvis, P.G. and Morison, J.I.L. (1981) Stomatal control of transpiration and photosynthesis, in Stomatal Physiology, (eds P.G. Jarvis and T.A. Mansfield), Cambridge University Press, Cambridge, pp. 247–280.

    Google Scholar 

  • Jarvis, P.G. and McNaughton, K.G. (1986) Stomatal control of transpira- tion: scaling up from leaf to region. Adv. Ecol. Res., 15, 1–49.

    Article  Google Scholar 

  • Jensen, C.R. (1982) Effect of soil water osmotic potential on growth and water relations in barley during soil water depletion. Irrig. Sci., 3, 111–121.

    Article  Google Scholar 

  • Johnsson, M., Issaias, S., Brogardh, T. and Johnsson, A. (1976) Rapid, blue-light-induced transpiration response restricted to plants with grass-like stomata. Physiol. Plant., 36, 229–232.

    Article  Google Scholar 

  • Kappen, L. and Haeger, S. (1991) Stomatal responses of Tradescantia albiflora to changing air humidity in light and in darkness. J. Exp. Bot., 42, 979–986.

    Article  Google Scholar 

  • Kappen, L., Andresen, G. and Lösch, R. (1987) In situ observations of stomatal movements.J. Exp. Bot., 38, 126–141.

    Article  Google Scholar 

  • Karlsson, P.E. (1986) Blue light regulation of stomata in wheat seedlings. II. Action spectrum and search for action dichroism. i., 66, 207–210.

    Google Scholar 

  • Karlsson, P.E. (1988) Phytochrome is not involved in the red-light- enhancement of the stomatal blue-light-response in wheat seedlings. Physiol. Plant., 74, 544–548.

    Article  CAS  Google Scholar 

  • Karlsson, P.E. and Assmann, S.M. (1990) Rapid and specific modulation of stomatal conductance by blue light in ivy (Hedera helix). Plant Physiol., 94, 440–447.

    Article  PubMed  CAS  Google Scholar 

  • Karlsson, P.E., Hoglund, H.-O. and Klockare, R. (1983) Blue light induces stomatal transpiration in wheat seedlings with chlorophyll deficiency caused by SAN 9789. Physiol. Plant., 57, 417–421.

    Article  CAS  Google Scholar 

  • Karlsson, P.E., Bogomolni, R.A. and Zeiger, E. (1992) HPLC of pigments from guard cell protoplasts and mesophyll tissue of Vicia faba L. Photochem. Photobiol., 55, 605–610.

    Article  CAS  Google Scholar 

  • Kaufmann, M.R. (1982) Leaf conductance as a function of photosyn- thetic photon flux density and absolute humidity difference from leaf to air. Plant Physiol., 69, 1018–1022.

    Article  PubMed  CAS  Google Scholar 

  • Keck, R.W. and Boyer, J.S. (1974) Chloroplast response to low leaf water potentials. III. Differing inhibition of electron transport and pho- tophosphorylation. Plant Physiol., 53, 474–479.

    Article  PubMed  CAS  Google Scholar 

  • Kirschbaum, M.U.F., Gross, L.J. and Pearcy, R.W. (1988) Observed and modelled stomatal responses to dynamic light environments in the shade plant, Alocasia macrorrhiza. i., 11, 111–121.

    Google Scholar 

  • Kuiper, P.J.C. (1964) Dependence upon wavelength of stomatal move- ment in epidermal tissue of Senecio odoris. Plant Physiol., 39, 952–955.

    Article  PubMed  CAS  Google Scholar 

  • Lange, O.L. (1969) Wasserumsatz und Bewegungen. Fortschritte Bot., 31, 76–86.

    Article  Google Scholar 

  • Lange, O.L, Lösch, R., Shulze, E.-D. and Kappen, L. (1971) Responses of stomata to changes in humidity. Planta, 100, 76–86.

    Article  Google Scholar 

  • Lascève, G., Gautier, H., Jappe, J. and Vavasseur, A. (1993) Modulation of the blue light response of stomata of Commelina communis by CO2. Physiol. Plant., 88, 453–459.

    Article  Google Scholar 

  • Lee, J. and Bowling, D.J.F. (1992) Effect of the mesophyll on stomatal opening in Commelina communis. J. Exp. Bot., 43, 951–957.

    Article  Google Scholar 

  • Lehnherr, B., Grandjean, A, Machler, F. and Fuhrer, J. (1987) The effect of ozone in ambient air on ribulosebisphosphate carboxylase/oxyge- nase activity decreases photosynthesis and grain yield in wheat. J Plant Physiol., 130, 189–200.

    Article  CAS  Google Scholar 

  • Lewis, B.G. and Day, J.R. (1972) Behaviour of uredospore germ-tubes of Puccinia graminis tritici in relation to the fine structure of wheat leaf surfaces. Trans. Br. Mycol. Soc., 58, 139–145.

    Article  Google Scholar 

  • Lindhauer, M.G. (1985) Influence of K+ nutrition and drought on water relations and growth of sunflower (Helianthus annuus L.). Z. Pflanz. Bodenkd., 148, 654–669.

    Article  Google Scholar 

  • Lloyd, F. E. (1908) The physiology of stomata. Publ. Carnegie Inst. Wash. 82.

    Google Scholar 

  • Loftfield, J. V. G. (1921) The behaviour of stomata. Publ. Carnegie Inst. Wash. 314.

    Google Scholar 

  • Lösch, R. (1977) Responses of stomata to environmental factors - experiments with isolated epidermal strips of Polypodium vulgare.I. Temperature and humidity. Oecologia, 29, 85–97.

    Article  Google Scholar 

  • Lösch, R. (1979) Responses of stomata to environmental factors in experiments with isolated epidermal strips of Polypodium vulgare.II. Leaf bulk water potential, air humidity, and temperature. Oecologia, 39, 229–238.

    Article  Google Scholar 

  • Lösch, R. and Schenk, B. (1978) Humidity responses of stomata and the potassium content of guard cells.J. Exp. Bot., 29, 781–787.

    Article  Google Scholar 

  • Lösch, R. and Tenhunen, J.D. (1981) Stomatal responses to humidity - phenomenon and mechanism, in Stomatal Physiology, (eds P.G. Jarvis and T.A. Mansfield), Cambridge University Press, Cambridge, pp.137–162.

    Google Scholar 

  • Lösch, R., Tenhunen, J.D., Pereira, J.S. and Lange, O.L. (1978) Diurnal courses of stomatal resistance and transpiration of wild and culti- vated Mediterranean perennials at the end of the summer dry sea- son in Portugal. Flora, 172, 138–160.

    Google Scholar 

  • Lösch, R., Jensen, C.R. and Anderson, M.N. (1992) Diurnal courses and factorial dependencies of leaf conductance and transpiration of differ- ently potassium fertilized and watered field grown barley plants. Plant and Soil, 140, 205–224.

    Article  Google Scholar 

  • Lu, Z., Quinones, M.A. and Zeiger, E. (1993a) Abaxial and adaxial stomata from Pima cotton (Gossypium barbadense L.) differ in their pigment content and sensitivity to light quality. Plant Cell Environ., 16, 851–858.

    Article  CAS  Google Scholar 

  • Lu, Z., Quinones, M.A. and Zeiger, E. (1993b) The temperature sensitiv- ity of guard cell respiration co-segregates with stomatal conductance in a F2 population of Pima cotton. Plant Physiol. Suppl., 102, 138.

    Google Scholar 

  • Ludlow, M.M. and Wilson, G.L. (1971) Photosynthesis of tropical pasture plants. Ill: leaf age. Aust. J. Biol. Sci., 24, 1077–1087.

    Google Scholar 

  • MacDowall, F.D.H. (1965) Predisposition of tobacco to ozone damage. Can J. Plant Sci., 45, 1–12.

    Article  Google Scholar 

  • Maier-Maecker, U. (1979) Peristomatal transpiration and stomatal move- ment: a controversial view. III. Visible effects of peristomatal transpi- ration on the epidermis. Z. Pflanz., 91, 225–238.

    Google Scholar 

  • Mansfield, T.A. (1965) Stomatal opening in high temperature in dark- ness.J Exp. Bot., 16, 721–731.

    Article  Google Scholar 

  • Mansfield, T.A. (1971) Stomata: versatile sensory devices but difficult experimental subjects.J. Biol. Educ., 5, 115–123.

    Article  Google Scholar 

  • Mansfield, T.A. and Heath, O.V.S. (1963) Studies in stomatal behaviour.IX. Photoperiodic effects on rhythmic phenomena in Xanthium pennsylvanicum. J. Exp. Bot., 15, 334–352.

    Article  Google Scholar 

  • Mansfield, T.A. and Heath, O.V.S. (1964) Studies in stomatal behaviour.X. An investigation of responses to low intensity illumination and temperature in Xanthium pennsylvanicum. J. Exp. Bot., 15, 114–124.

    Article  Google Scholar 

  • Mansfield, T.A. and Meidner, H. (1966) Stomatal opening in light of dif- ferent wavelengths: effects of blue light independent of carbon diox- ide concentration.J Exp. Bot., 17, 510–521.

    Article  Google Scholar 

  • Mansfield, T.A. and Jones, R.J. (1970) Increases in the diffusion resis- tances of leaves in a carbon dioxide-enriched atmosphere. J. Exp. Bot., 21, 951–958.

    Article  Google Scholar 

  • Mansfield, T.A. and Majernick, O. (1970) Can stomata play a part in pro- tecting plants against air pollutants? Environ. Pollut., 1, 149–154.

    Google Scholar 

  • Mansfield, T.A. and Freer-Smith, P.H. (1981) Effects of urban air pollution on plant growth. Biol. Rev., 56, 343–368.

    Article  CAS  Google Scholar 

  • Martin, E.S. and Meidner, H. (1971) Endogenous stomatal movements in Tradescantia virginiana. New Phytol., 70, 923–928.

    Article  Google Scholar 

  • Martin, E.S. and Meidner, H. (1972) The phase response of the dark stomatal opening in Tradescantia virginiana to light and dark treat- ments. New Phytol., 71, 1045-1054.

    Article  Google Scholar 

  • Martin, E.S. and Stevens, R.A. (1979) Circadian rhythms in stomatal movements, in Structure, Function and Ecology of Stomata, (ed. D.N. Sen), Bishen Singh and Mahendra Pal Singh, Dehra Dun, India, pp. 251–268.

    Google Scholar 

  • Mawson, B.T. and Cummins, W.R. (1991) Low temperature acclimation of guard cell chloroplasts by the arctic plant Saxifraga cernua L. Plant Cell Environ., 14, 569–576.

    Article  Google Scholar 

  • Meidner, H. (1965) Stomatal control of transpirational water loss. Symp. Soc. Exp. Biol., XIX, 185–204.

    Google Scholar 

  • Meidner, H. (1975) Water supply, evaporation, and vapour diffusion in leaves.J. Exp. Bot., 26, 666–673.

    Article  Google Scholar 

  • Meidner, H. (1983) Our understanding of plant water relations. J Exp. Bot., 34, 1606–1618

    Article  Google Scholar 

  • Meidner, H. (1987) The humidity response of stomata and its measure- ment.J. Exp. Bot., 38, 877–882.

    Article  Google Scholar 

  • Meidner, H. and Heath, O.V.S. (1959) Stomatal responses to temperature and carbon dioxide concentration in Allium cepa L. and their rele- vance to midday closure.J. Exp. Bot., 10, 206–219.

    Article  CAS  Google Scholar 

  • Meidner, H. and Willmer, C.M. (1993) Circadian rhythms of stomatal movements in epidermal strips. J. Exp. Bot., 44, 1649–1652.

    Article  Google Scholar 

  • Morison, J.I.L. and Jarvis, P.G. (1981) The control of transpiration and photosynthesis by stomata, in Stomatal Physiology, (eds P.G. Jarvis and T.A. Mansfield), Cambridge University Press, Cambridge, pp. 247–279.

    Google Scholar 

  • Morison, J.I.L. and Jarvis, P.G. (1983) Direct and indirect effects of light on stomata. II In Commelina communis L. Plant Cell Environ., 6, 103–109.

    Article  Google Scholar 

  • Mott, K.A. and Parkhurst, D.F. (1991) Stomatal responses to humidity in air and helox. Plant Cell Environ., 14, 509–515.

    Article  Google Scholar 

  • Murali, N.S. and Saxe, H. (1984) Effects of UV-C radiation on net photo- synthesis, transpiration and dark respiration of Spathyphyllum wallisii. Physiol. Plant., 60, 192–196.

    Article  CAS  Google Scholar 

  • Neales, T. F. (1975) The gas exchange patterns of CAM plants, in The Environmental and Biological Control of Photosynthesis, (ed. R. Marcelle), Junk, The Hague.

    Google Scholar 

  • Negash, L. and Bjorn, L.O. (1986) Stomatal closure by ultraviolet radia- tion. Physiol. Plant., 66, 360–364.

    Article  Google Scholar 

  • Negash, L., Jenson, P. and Bjorn, L.O. (1987) Effect of ultraviolet radiation on accumulation and leakage of 86Rb+ in guard cells of Vicia faba. Physiol. Plant., 69, 200–204.

    Article  CAS  Google Scholar 

  • Nelson, S.D. and Mayo, J.M. (1975) The occurrence of functional non- chlorophyllous guard cells in Paphiopedilum spp. Can. J. Bot., 53, 1–7.

    Article  Google Scholar 

  • Nonani, H. and Schulze, E.-D. (1989) Cell water potential, osmotic poten- tial, and turgor in the epidermis and mesophyll of transpiring leaves. Planta, 177, 35–46.

    Article  Google Scholar 

  • Nonani, H., Schulze, E.-D. and Ziegler, H. (1990) Mechanisms of stomatal movement in response to air humidity, irradiance and xylem water potential. Planta, 183, 57–64.

    Google Scholar 

  • Ogawa, T., Ishikawa, H., Shimada, K. and Shibata, K. (1978) Synergistic action of red and blue light and action spectra for malate formation in guard cells of Vicia faba L. Planta, 142, 61–65.

    Article  CAS  Google Scholar 

  • Omasa, K., Hashimoto, Y. and Aiga, I. (1981) A quantitative analysis of the relationship between SO2 or NO2 sorption and their acute effects on plant leaves using image instrumentation. Environ. Control Biol., 19, 59–67.

    Article  CAS  Google Scholar 

  • Omasa, K. and Onoe, M. (1984) Measurement of stomatal aperture by digital image processing. Plant Cell Physiol., 25, 1379–1388.

    Google Scholar 

  • Osborne, B.A., O’Connell, C., Campbell, G.C. and Weyers, J.D.B. (1994) Stomata of Gunnera tinctoria do not respond to light, CO2 or ABA. J. Exp. Bot. Suppl., 44, 4.

    Google Scholar 

  • Osman A.M. and Milthorpe, F.L. (1971) Photosynthesis of wheat leaves in relation to age, illumination, and nutrient supply. II. Results. Photosynthetica, 5, 61–70.

    Google Scholar 

  • Ozuna, R., Yera, R., Ortega, K. and Tallman, G. (1985) Analysis of guard cell viability and action in senescing leaves of Nicotiana glauca (Graham), tree tobacco. Plant Physiol., 79, 7–10.

    Article  PubMed  CAS  Google Scholar 

  • Pallaghy, C.K. and Fischer, R.A. (1974) Metabolic aspects of stomatal opening and ion accumulation by guard cells of Vicia faba. Z. Pflanz., 71, 332–344.

    CAS  Google Scholar 

  • Pallas, J.E. (1980) An apparent anomaly in peanut leaf conductance. Plant Physiol.,65, 848–851.

    Article  PubMed  CAS  Google Scholar 

  • Park, J. and Thimann, K.V. (1990) Senescence and stomatal aperture as affected by antibiotics in darkness and light. Plant Physiol., 92, 696–702.

    Article  PubMed  CAS  Google Scholar 

  • Pasternak, D. and Wilson, G.L. (1972) After-effects of night temperatures on stomatal behaviour and photosynthesis of Sorghum. New Phytol., 71, 683–689.

    Article  Google Scholar 

  • Pearson, M. and Mansfield, T.A. (1993) Interacting effects of ozone and water-stress on the stomatal resistance of beech (Fagus sylvatica L). New Phytol., 123, 351–358.

    Article  CAS  Google Scholar 

  • Peaslee, D.E. and Moss, D.N. (1968) Stomatal conductivities in K-defìcient leaves of maize (Zea mays, L.) Crop Sci., 8, 427–430.

    Article  Google Scholar 

  • Pemadasa, M.A. (1982) Abaxial and adaxial stomatal responses to light of different wavelengths and to phenylacetic acid on isolated epidermis of Commelina communis L. J. Exp. Bot., 33, 92–99.

    Article  CAS  Google Scholar 

  • Pring, R.J. (1980) A fine structural study of the infection of leaves of Phaseolus vulgaris by uredospores of Uromyces phaseoli. Physiol Plant Pathol., 17, 269–276.

    Google Scholar 

  • Quinones, M.A., Lu, Z. and Zeiger, E. (1993) Zeaxanthin concentrations co-segregate with the magnitude of the blue light response of adaxial guard cells and leaf stomatal conductances in an F2 population of Pima cotton. Plant Physiol. Suppl., 102, 15.

    Google Scholar 

  • Radin, J.W. (1984) Stomatal responses to water stress and to abscisic acid in phosphorus-deficient cotton plants. Plant Physiol., 76, 392–394.

    Article  PubMed  CAS  Google Scholar 

  • Radin, J.W., Parker, L.L. and Guinn, G. (1982) Water relations of cotton plants under nitrogen deficiency. V Environmental control of abscisic acid accumulation and stomatal sensitivity to abscisic acid. Plant Physiol., 70, 1066–1077.

    Article  PubMed  CAS  Google Scholar 

  • Radoglou, K.M., Aphalo, P. and Jarvis, P.G. (1992) Response of photosyn- thesis, stomatal conductance and water use efficiency to elevated CO2 and nutrient supply in acclimated seedlings of Phaseolus vulgaris L. Ann Bot., 70, 257–264.

    CAS  Google Scholar 

  • Rao, I.M., Amundson R.G., Alscher-Herman, R. and Anderson, L.E. (1983) Effects of SO2 on stomatal metabolism in Pisum sativum L. Plant Physiol., 72, 573–577.

    Article  PubMed  CAS  Google Scholar 

  • Raschke, K. (1970) Temperature dependence of CO2 assimilation and stomatal aperture in leaf sections of Zea mays. Planta, 91, 336–363.

    Article  CAS  Google Scholar 

  • Raschke, K. (1975) Stomatal action. Ann. Rev. Plant Physiol., 26, 309–40.

    Article  CAS  Google Scholar 

  • Raschke, K. (1979) Movements of stomata, in Encyclopedia of Plant Physiology, Vol. 7, Physiology of Movements, (eds W. Haupt and M.E. Feinlieb), Springer, Berlin, pp. 381–441.

    Google Scholar 

  • Reich, P.B. and Amundson, R.G. (1985) Ambient levels of ozone reduce net photosynthesis in tree and crop species. Science, 230, 566-570.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, M.D., Hoveland, C.S. and Bacon, C.W. (1993) photosynthesis and stomatal conductance of symbiotic and nonsymbiotic tall fescue. Crop Sci., 33, 145–149.

    Article  Google Scholar 

  • Roth-Bejerano, N. and Itai, C. (1981) Involvement of phytochrome in stomatal movement. Effect of blue and red light. Physiol. Plant., 52, 201–206.

    Article  CAS  Google Scholar 

  • Roth-Bejerano, N. and Nejidat, A. (1987) Phytochrome effects on K+ fluxes in guard cells of Commelina communis. Physiol. Plant., 71, 345–351.

    Article  CAS  Google Scholar 

  • Roth-Bejerano, N., Nejidat, A and Itai, C. (1985) Further support for the involvement of phytochrome in stomatal movements. Physiol Plant., 64, 501–506.

    Article  CAS  Google Scholar 

  • Royle, D. J. (1976) Structural features of resistance to plant-diseases, in Biochemical Aspects of Plant-Parasite Relationships (Phytochem. Soc. Symp. Ser. 13), (eds J. Friend and D.R. Threlfall), Academic Press, London.

    Google Scholar 

  • Saunders, M.J., Cordonnnier, M.-M., Palevitz, B.A. and Pratt, L.H. (1983) Immunofluorescence visualization of phytochrome in Pisum sativum L. epicotyls using monoclonal antibodies. Planta, 159, 545–553.

    Article  CAS  Google Scholar 

  • Schnabl, H., Weissenbock, G., Sachs, G. and Scharf, H. (1989) Cellular distribution of UV-absorbing compounds in guard and subsidiary cells of Zea mays L. J. Plant Physiol., 135, 249–252.

    Article  CAS  Google Scholar 

  • Schönherr, J. (1982) Resistance of plant surfaces to water loss: transport properties of cutin, suberin and associated lipids, in Encyclopedia of Plant Physiology, Vol. 12B, Physiological Plant Ecology II Water Relations and Carbon Assimilation, (eds O.L. Lange, P.S. Nobel, C.B. Osmond and H. Ziegler), Springer, Heidleberg, pp. 154–179.

    Google Scholar 

  • Schulte-Hostede, S., Darrall, N.M., Blank, L.W. and Wellburn, A.R. (1988) Air Pollution and Plant Metabolism, Elsevier, Amsterdam.

    Google Scholar 

  • Schulze, E.-D. (1986) Carbon dioxide and water vapour exchange in response to drought in the atmosphere and in the soil. Ann. Rev. Plant Physiol., 37, 247–274.

    Article  Google Scholar 

  • Schulze, E. D., Lange, O. L., Kappen, L. et al. (1973) Stomatal responses to changes in temperature at increasing water-stress. Planta, 110, 29–42.

    Article  Google Scholar 

  • Schulze, E.-D., Lange, O.L., Evanari, M. et al. (1974) The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions. I. A simulation of the daily course of stomatal resistance. Oecologia, 17, 159–170.

    Article  Google Scholar 

  • Shackel, K.A. and Brinckmann, E. (1985) In situ measurement of epider- mal cell turgor, leaf water potential, and gas exchange in Tradescantia virginiana L. Plant Physiol., 78, 66–70.

    Article  PubMed  CAS  Google Scholar 

  • Sheriff, D.W. (1977a) The effect of humidity on water uptake by, and vis- cous flow resistance of, excised leaves of a number of species: physio- logical and anatomical observations. J. Exp. Bot., 28, 1399–1407.

    Article  Google Scholar 

  • Sheriff, D.W. (1977b) Evaporation sites and distillation in leaves. Ann. Bot., 41, 1081–1082.

    Google Scholar 

  • Shimazaki, K.-I., Ito, K., Kondo, N. and Sugahara, K. (1984) Reversible inhibition of the photosynthetic water-splitting enzyme system by SO2 fumigation assayed by chlorophyll fluorescence and EPR signal in vivo. Plant Cell Physiol., 25, 795–803.

    CAS  Google Scholar 

  • Shimazaki, K.-I., Iino, M. and Zeiger, E. (1986) Blue light-dependent pro- ton extrusion by guard cell protoplasts of Vicia faba. Nature, 319, 324–326.

    Article  CAS  Google Scholar 

  • Shimazaki, K., Igarashi, T. and Kondo, N. (1988) Protection by the epi- dermis of photosynthesis against UV-C radiation estimated by chloro- phyll a fluorescence. Physiol. Plant., 74, 34–38.

    Article  CAS  Google Scholar 

  • Solarova, J. and Pospisilova, J. (1983) Photosynthetic characteristics dur- ing ontogenesis of leaves, VIII. Stomatal diffusive conductance and stomatal reactivity. Photosynthesis, 14, 523–531.

    Google Scholar 

  • StÃ¥lfelt, M.G. (1955) The stomata as a hydrophotic regulator of the water deficit of the plant. Physiol. Plant., 8, 572–593.

    Article  Google Scholar 

  • StÃ¥lfelt, M.G. (1962) The effect of temperature on opening of stomatal cells. Physiol. Plant., 10, 752–793.

    Article  Google Scholar 

  • StÃ¥lfelt, M.G. (1963) Diurnal dark reactions in the stomatal movements. Physiol. Plant., 16, 756–766.

    Article  Google Scholar 

  • Staples, R.C. and Macko, V. (1980) Formation of infection structures as a recognition response in fungi. Exp. Mycol., 4, 2–16.

    Article  Google Scholar 

  • Stocker, O. (1956) Die Abhangigkeit der Transpiration von den Umweltfaktoren, in Encyclopedia of Plant Physiology, Vol. Ill, (ed. W. Ruhland), Springer, Berlin, pp. 436–488.

    Google Scholar 

  • Takahama, U. (1988) Hydrogen peroxide-dependent oxidation of flavonoids and hydroxycinnamic acid derivatives in epidermal and guard cells of Tradescantia virginiana L. Plant Cell Physiol., 29, 475–481.

    CAS  Google Scholar 

  • Tenhunen, J.D., Lange, O.L., Braun, M. et al. (1980) Midday stomatal clo- sure in Arbutus unedo leaves in a natural macchia and under simu- lated habitat conditions in an environmental chamber. Oecologia, 47, 365–7.

    Article  Google Scholar 

  • Tenhunen, J.D., Lange, O.L., Gebel, J. et al. (1984) Changes in photosyn- thetic capacity, carboxylation efficiency, and CO2 compensation point associated with midday stomatal closure and midday depression of net CO2 exchange of leaves of Quercus suber. Planta , 162,193–203.

    Article  CAS  Google Scholar 

  • Teramura, A.H., Tevini, M. and Iwanzik, W. (1983) Effects of ultraviolet-B irradiation on plants during mild water stress. I. Effects on diurnal stomatal resistance. Physiol. Plant., 57, 175–180.

    Article  Google Scholar 

  • Thimann, K.V. and Satler, S.O. (1979a) Relations between leaf senescence and stomatal closure: senescence in light. Proc. Natl. Acad. Sci. USA, 76, 2295–2298.

    Article  PubMed  CAS  Google Scholar 

  • Thimann, K.V. and Satler, S.O. (1979b) Relation between senescence and stomatal opening: senescence in darkness. Proc. Natl. Acad. Sci. USA, 76, 2770–2773.

    Article  PubMed  CAS  Google Scholar 

  • Thimann, K.V. and Tan, Z.-Y. (1988) The dependence of stomatal closure on protein synthesis. Plant Physiol., 86, 341–343.

    Article  PubMed  CAS  Google Scholar 

  • Ting, I.P. and Dugger, W.M. (1968) Factors affecting ozone sensitivity and susceptibility of cotton plants .J. Air Pollut. Control Ass., 18, 810–813.

    Article  CAS  Google Scholar 

  • Travis, A.J. and Mansfield, T.A. (1981) Light saturation of stomatal open- ing on the adaxial and abaxial epidermis of Commelina communis. J. Exp. Bot., 32, 1169–1179.

    Article  Google Scholar 

  • Turner, N. (1974) Stomatal responses to light and water under field con- ditions, in Mechanisms of Regulation of Plant Growth, (ed. R. Bielski), Royal Society of New Zealand, Bull. 12, pp. 423–432.

    Google Scholar 

  • Tyree, M.T. and Yianoulis, P. (1980) The site of evapouration from sub- stomatal cavities, liquid path resistances and hydroactive stomatal clo- sure. Ann. Bot., 46, 175–193.

    Google Scholar 

  • Unsworth, M.H. and Black, V.J. (1981) Stomatal responses to pollutants, in Stomatal Physiology, (eds P.G. Jarvis and T.A. Mansfield), Cambridge University Press, Cambridge, pp. 187–203.

    Google Scholar 

  • Vaclavik, J. (1973) Effect of different leaf ages on the relationship between the CO2 uptake and water vapour efflux in tobacco plants. Biol. Plant., 15, 233–236.

    Article  CAS  Google Scholar 

  • Vierstra, R.D., John, T.R. and Poff, K.L. (1982) Kaempferol 3-O-galacto- side 7-O-rhamnoside is the major green fluorescing compound in the epidermis of Vicia faba. Plant Physiol., 69, 522–525.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, A. and Frolich, E. (1965) Phosphorus-deficiency symptoms in tobacco and transpirational water loss. Nature, 208, 1131.

    Article  Google Scholar 

  • Wardle, K. and Short, K.C. (1983) Stomatal responses and the senes- cence of leaves .Ann. Bot., 52, 411–412.

    CAS  Google Scholar 

  • Warrit, B., Landsberg, J.J. and Thorpe, M.R. (1980) Respones of apple leaf stomata to environmental factors. Plant Cell Environ., 3, 13–22.

    Google Scholar 

  • Watts, W.R. and Neilson, R.E. (1978) Photosynthesis in Sitka spruce (Picea sitchensis [Bong.] Carr.) Vlll. Measurements, of stomatal con- ductance and 14CO2 uptake in controlled environments,J Appl. Ecol., 15, 245–255.

    Article  CAS  Google Scholar 

  • Weissenbock, G., Schnabl, H., Sachs, G. et al. (1984) Flavonol content of guard cell and mesophyll cell protoplasts isolated from Vicia faba leaves. Physiol. Plant., 62, 356–362.

    Article  Google Scholar 

  • Weissenbock, G., Hedrich, R. and Sachs, G. (1986) Secondary phenolic products in isolated guard cell, epidermal cell and mesophyll cell pro- toplasts from pea (Pisum sativum L.) leaves: distribution and deter- mination. Protoplasma, 134, 141–148.

    Article  Google Scholar 

  • Weissenbock, G., Schnabl, H., Scharf, H. and Sachs, G. (1987) On the properties of fluorescing compounds in guard and epidermal cells of Allium cepa L. Planta, 171, 88–95.

    Article  Google Scholar 

  • Wheeler, B.E.J. (1968) Fungal parasites of plants, in The Fungi, An Advanced Treatise, Vol. Ill, The Fungal Population, (eds G.C. Ainsworth and A.S. Sussman), Academic Press, New York, pp. 179–204.

    Google Scholar 

  • Wilkins, M.B. (1959) An endogenous rhythm in the rate of carbon diox- ide output of Bryophyllum. 1. Some preliminary experiments. J. Exp. Bot., 10, 377–90.

    Article  CAS  Google Scholar 

  • Wilkins, M.B. (1969) Circadian rhythms in plants, in Physiology of Plant Growth and Development, (ed. M.B. Wilkins), McGraw-Hill, London, pp. 179–204.

    Google Scholar 

  • Wilkins, M.B. (1992) Circadian rhythms: their origin and control. New Phytol., 121,347–375

    Article  CAS  Google Scholar 

  • Wilkins, M.B. (1993) The role of stomata in generation of circadian rhythms in plant tissues. J. Exp. Bot. Suppl., 44, 2.

    Google Scholar 

  • Willmer, C.M. (1984) Some characteristics of phosphoenolpyruvate car- boxylase activity from leaf epidermal tissue in relation to stomatal functioning. New Phytol., 84, 593–602.

    Article  Google Scholar 

  • Willmer, C.M. (1988) Stomatal sensing of the environment. Biol. J. Linn Soc., 34, 204–217.

    Article  Google Scholar 

  • Willmer, C.M., Wilson, A.B. and Jones, H.G. (1988) Changing sensitivities of stomata to abscisic acid and CO2 as leaves and plants age. J. Exp. Bot., 39, 401–410.

    Article  CAS  Google Scholar 

  • Willmer, C.M. and Pantoja, O. (1992) The plasma membrane and tono- plast of guard cells, in Plant Membranes: A Biophysical Approach, (ed. Y.Y. Lesham), Kluwer, Dordrecht, pp. 220–238.

    Google Scholar 

  • Wong, S.C., Cowan, I.R. and Farquhar, G.D. (1979) Stomatal conduc- tance correlates with photosynthetic capacity. Nature, 282, 424–426.

    Article  Google Scholar 

  • Wong, S.C., Cowan, I.R. and Farquhar, G.D. (1978) Leaf conductance in relation to assimilation in Eucalyptus pauciflora Sieb, ex Spreng. Influence of irradiance and partial pressure of carbon dioxide. Plant Physiol, 62, 670–674.

    Article  PubMed  CAS  Google Scholar 

  • Zeiger, E. and Hepler, P.K. (1979) Blue light-induced intrinsic vacuolar fluorescence in onion guard cells. J. Cell Sci., 37, 1–10.

    PubMed  CAS  Google Scholar 

  • Zeiger, E. and Schwartz, A. (1982) Longevity of guard cell chloroplasts in falling leaves: implication for stomatal functioning and cellular aging. Science, 218, 680–682.

    Article  PubMed  CAS  Google Scholar 

  • Zeiger, E., Field, C. and Mooney, H.A. (1981) Stomatal opening at dawn: possible roles of the blue light response in nature, in Plants and the Daylight Spectrum, (ed. H. Smith), Academic Press, New York, pp. 391–407.

    Google Scholar 

  • Zeiger, E., Iino, M. Shimazaki, K.-I. and Ogawa, T. (1987) The blue-light response of stomata: mechanism and function, in Stomatal Function, (eds E. Zeiger, G.D. Farquhar and I.R. Cowan), Stanford University Press, Stanford, CA, pp. 207–227.

    Google Scholar 

  • Ziegler, I. (1975) The effects of SO2 pollution on plant metabolism. Residue Rev., 56, 79–105.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Colin Willmer and Mark Fricker

About this chapter

Cite this chapter

Willmer, C., Fricker, M. (1996). Stomatal responses to environmental factors. In: Stomata. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0579-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0579-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4256-7

  • Online ISBN: 978-94-011-0579-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics