Skip to main content

The mechanics of stomatal movements

  • Chapter
Stomata

Abstract

Considerable progress has been made in understanding the osmotic changes that generate turgor increases in a guard cell. However, despite the fundamental importance of mechanical interactions between guard cells and neighbouring cells in determining stomatal aperture, much still remains to be elucidated; there is little detailed information on the rele- vant cell volumes, on wall morphology or on the physico-chemical prop- erties of the wall polymers that translate turgor differences to changes in cell shape during stomatal movements. This chapter deals primarily with the water relations of guard cells and epidermal tissue, and the different modes of deformation of guard cells during stomatal movements. Additionally, the osmotic relations of guard cell protoplasts (GCPs) will be considered, including the dynamics of membrane recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allaway, W.G. and Milthorpe, F.L. (1976) Structure and functioning of stomata, in Water Deficits and Plant Growth, Vol. IV, Academic Press. New York.

    Google Scholar 

  • Aylor, D.E., Parlange, J.Y. and Krikorian, A.D. (1973) Stomatal mechanics. Am. J. Bot., 60, 163–171.

    Article  Google Scholar 

  • Bearce, B.C. and Kohl, H.C., Jr (1970) Measuring osmotic pressure of sap within live cells by means of a visual melting point apparatus. Plant Physiol., 46, 515–519.

    Article  PubMed  CAS  Google Scholar 

  • Brindley, H.M. (1990) Fluxes of 86Rb+ in ‘isolated’ guard cells of Vicia faba L. Planta, 181, 432–439.

    CAS  Google Scholar 

  • Cooke, J.R., DeBaerdemaeker, J.G., Rand, R.H. and Mang, H.A. (1976) A finite element shell analysis of guard cell deformation. Trans. Am. Soc. Agric. Eng., 19, 1107–1121.

    Google Scholar 

  • DeMichele, D.W. and Sharpe, P.I.H. (1973) An analysis of the mechanics of guard cell motion.J. Theor. Biol., 41, 77–96.

    Article  PubMed  CAS  Google Scholar 

  • Diekmann, W., Hedrich, R., Raschke, K. and Robinson, D.G.. (1993) Osmocytosis and vacuolar fragmentation in guard cell protoplasts: their relevance to osmotically-induced volume changes in guard cells. J. Exp. Bot., 44, 1569–1577.

    Article  Google Scholar 

  • Edwards, M. and Meidner, H. (1979) Direct measurements of turgor pressure potentials.J. Exp. Bot., 30, 829–837.

    Article  Google Scholar 

  • Edwards, M., Meidner, H. and Sheriff, D.W. (1976) Direct measurements of turgor pressure potentials of guard cells. II. The mechanical advan-tage of subsidiary cells, the Spannungsphase and the optimum leaf water deficit.J. Exp. Bot., 21, 163–171.

    Article  Google Scholar 

  • Fischer, R.A. (1973) The relationship of stomatal aperture and guard cell turgor pressure in Vicia faba. J. Exp. Bot., 24, 387–399.

    Article  CAS  Google Scholar 

  • Fitzsimons, P.J. and Weyers, D.J.B. (1986) Volume changes of Commelina communis L. guard cell protoplasts in response to K+, light and CO2. Physiol. Plant., 60, 463–468.

    Article  Google Scholar 

  • von Guttenberg, H. (1971) Bewegungsgewebe und Perzeptionsorgane, in Handbuch der Pflanzenanatomie, Vol. V, (eds S. Carlquist, W. Zimmermann, P. Ozenda and H.D. Wulff), Gebrüder Borntraeger, Berlin, pp. 203–219.

    Google Scholar 

  • Haberlandt, G. (1896) Physiologische Pfanzenanatomie, 2nd edn, Englemann, Leipzig.

    Google Scholar 

  • Heath, O.V.S. (1938) An experimental investigation of the mechanism of stomatal movement with some preliminary observations upon the response of the guard cells to ‘shock’. New Phytol., 37, 385–395.

    Article  Google Scholar 

  • Hillmer, S., Hedrich, R., Robert-Nicoud, M. and Robinson, D.G. (1990) Uptake of Lucifer yellow CH in leaves of Commelina communis is mediated by endocytosis. Protoplasma, 158, 142–148.

    Article  Google Scholar 

  • MacRobbie, E.A.C. (1980) Osmotic measurements on stomatal cells of Commelina communis L.J. Membr. Biol., 53, 189–198.

    Article  Google Scholar 

  • MacRobbie, E.A.C. and Lettau, J. (1980) Ion content and aperture in iso-lated guard cells of Commelina communis L.J. Membr Biol., 53, 199–205.

    Article  CAS  Google Scholar 

  • Meidner, H. (1982) Guard cell pressures and wall properties during stomatal opening.J. Exp. Bot., 33, 355–359.

    Article  Google Scholar 

  • Meidner, H. and Edwards, M. (1975) Direct measurements of turgor pressure potentials of guard cells. I.J. Exp. Bot., 26, 319–330.

    Article  Google Scholar 

  • Meidner, H. and Mansfield, T.A. (1968) Physiology of Stomata, McGraw-Hill, New York.

    Google Scholar 

  • Meidner, H. and Bannister, P. (1979) Pressure and solute potentials in stomatal cells of Tradescantia virginiana.f. Exp. Bot., 30, 255–265.

    Article  Google Scholar 

  • Meidner, H. and Willmer, C.M. (1975) Mechanics and metabolism of guard cells. Curr. Adv. Plant Sci., 17, 1–15.

    Google Scholar 

  • von Mohl, H. (1856) Welche Ursachen bewirken Erweiterung und Verengung der Spaltoffnungen? Bot. Z., 14, 697–704, 713-721.

    Google Scholar 

  • Nobel, PS. (1991) Physicochemical and Environmental Plant Physiology, Academic Press, San Diego, CA.

    Google Scholar 

  • Raschke, K. (1975) Stomatal action. Ann. Rev. Plant Physiol., 26, 309–340.

    Article  CAS  Google Scholar 

  • Raschke, K. (1979) Movements of stomata, in Encyclopedia of Plant Physiology. Vol. 7, Physiology of Movements, (eds W. Hampt and M.E. Feinleib), Springer, Berlin.

    Google Scholar 

  • Rogers, C.A., Powell, R.D. and Sharpe, P.J.M. (1979) The relationship of temperature on stomatal aperture and potassium accumulation in guard cells. Plant Physiol., 63, 388–391.

    Article  PubMed  CAS  Google Scholar 

  • Saxe, H. (1979) A structural and functional study of the coordinated reactions of individual Commelina communis L. stomata (Commelinaceae). Am.f. Bot., 66, 1044–1052.

    Article  Google Scholar 

  • Schwendener, S. (1881) Ãœber Bau und Mechanik der Spaltöffnungen. Monatsber. Kgl. Akad. Wiss. Berlin., 43, 833–867.

    Google Scholar 

  • Sharpe, P.J.H. and Wu, H.-I. (1978) Stomatal mechanics: volume changes during opening. Plant Cell Environ., 1, 259–268.

    Article  Google Scholar 

  • Sharpe, P.J.H., Wu, H.-I. and Spence, R.D. (1987) Stomatal mechanics, in Stomatal Function, (eds E. Zeiger, G.D. Farquhar and I.R. Cowan), Stanford University Press, Stanford, CA, pp. 91–114.

    Google Scholar 

  • Spence, R.D., Wu, H., Sharpe, P.J.H. and Clark, K.G. (1986) Water stress effects on guard cell anatomy and the mechanical advantage of the epidermal cells. Plant Cell Environ., 9, 197–202.

    Google Scholar 

  • StÃ¥lfelt, M.G. (1927) Die photischen Reaktionen im Spaltöffnungsmecha-nismus. Flora, 121, 236–272.

    Google Scholar 

  • StÃ¥lfelt, M.G. (1966) The role of the epidermal cells in the stomatal movements. Physiol. Plant., 49, 241–256.

    Article  Google Scholar 

  • Weyers, D.J.B. and Fitzsimons, P.J. (1982) The non-osmotic volume of Commelina guard cells. Plant Cell Environ., 5, 417–421.

    Article  Google Scholar 

  • Weyers, D.J.B. and Fitzsimons, P.J. (1985) Properties of some enzymes used for protoplast isolation, in The Physiological Properties of Plant Protoplasts, (ed. P.-E. Pilet), Springer, Berlin, pp. 152–161.

    Chapter  Google Scholar 

  • Weyers, J.D.B. and Meidner, H. (1990) Methods in Stomatal Research, Longman Scientific and Technical, Harlow, UK.

    Google Scholar 

  • Willmer, C.M. (1983) Stomata, Longman, London.

    Google Scholar 

  • Willmer, C.M. and Beattie, L.N. (1978) Cellular osmotic phenomena dur-ing stomatal movements of Commelina communis. 1. Limitations of the incipient plasmolysis technique for determining osmotic pres-sures. Protoplasma, 95, 321–332.

    Article  CAS  Google Scholar 

  • Willmer, C.M. and Pantoja, O. (1991) The plasma membrane and tono-plast of guard cells, in The Plasma Membrane; A Biophysical Approach, (ed. Y.Y. Leshem), Kluwer, Dordrecht.

    Google Scholar 

  • Wolfe, J. and Steponkus, P.L. (1983) Mechanical properties of the plasma membrane of isolated plant protoplasts. Plant Physiol., 71, 276–285.

    Article  PubMed  CAS  Google Scholar 

  • Wu, H.-I. and Sharpe, P.J.H. (1979) Stomatal mechanics II: material prop-erties of guard cell walls. Plant Cell Environ., 2, 235–244.

    Article  Google Scholar 

  • Wu, H.-I, Sharpe, P.J.H. and Spence, R.D. (1985) Stomatal mechanics. III. Geometric interpretation of the mechanical advantage. Plant Cell Environ., 8, 269–274.

    Google Scholar 

  • Ziegler, H. (1987) The evolution of stomata, in Stomatal Function, (eds E. Zeiger, G.D. Farquhar and I.R. Cowan), Stanford University Press, Stanford, CA, pp. 29–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Colin Willmer and Mark Fricker

About this chapter

Cite this chapter

Willmer, C., Fricker, M. (1996). The mechanics of stomatal movements. In: Stomata. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0579-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0579-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4256-7

  • Online ISBN: 978-94-011-0579-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics