Skip to main content

Part of the book series: Molecular and Cell Biology of Human Diseases Series ((Mol. Cell Biol. Hu. Dis.,volume 20))

Abstract

Gene transfer as applied to human cancers is a rapidly evolving and encouraging discipline. As the experience with these new therapeutic techniques grows, so does the awareness of the tolerable toxicities and the potential therapeutic opportunities. Currently many laboratories are aggressively pursuing new vector delivery systems and new therapeutic genes thereby increasing the spectrum of tumor types in clinical trials. With this explosive investigative effort, two early major themes have emerged. First, increasing evidence indicates that the gene products can have anti-tumor efficacy. Second, the transfer of genes to target tumor cells for in vivo expression has so far been found safe with acceptable toxicity. Certainly this emerging technology is creating great enthusiasm and apparent promise for cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asher, A.L., Mule, J.J., Kasid, A. et al. (1991) Murine tumor cells transduced with the gene for tumor necrosis factor-α. J. Immunol., 146, 3227–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baker, S.J., Markowitz, S., Fearon, E.R. et al. (1990) Suppression of human colorectal carcinoma cell growth by wild-type p53. Science, 249, 912–15.

    Article  CAS  PubMed  Google Scholar 

  • Bi, W.L., Parysek, L.M., Warnick, R. and Stambrook, P.J. (1993) In vitro evidence that metabolic cooperation is responsible for the bystander effect observed with HSV tk retroviral gene therapy. Human Gene Ther., 4, 725–32.

    Article  CAS  Google Scholar 

  • Brenner, M.K., Furman, W.L., Santana, V.M. et al. (1992) Phase I study of cytokine gene modified autologous neuroblastoma cells for treatment of relapsed/ refractory neuroblastoma. Human Gene Ther., 3, 665–76.

    Article  Google Scholar 

  • Brenner, M.K., Rill, D.R., Moen, R.C. et al. (1993) Gene-marking to trace origin of relapse after autologous bone-marrow transplantation. Lancet, 341, 85–6.

    Article  CAS  PubMed  Google Scholar 

  • Caruso, M., Panis, Y., Gagandeep, S. et al. (1993) Regression of established macroscopic liver metastases after in situ transduction of a suicide gene. Proc. Natl Acad. Sci. USA, 90, 7024–8.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S-H., Shine, H.D., Goodman, J.C., Grossman, R.G. and Woo, S.L.C. (1994) Gene therapy for brain tumors: regression of experimental gliomas by adenovirus-mediated gene transfer in vivo. Proc. Natl Acad. Sci. USA, 91, 3054–7.

    Article  CAS  PubMed  Google Scholar 

  • Colombo, M.P. and Forni, G. (1994) Cytokine gene transfer in tumor inhibition and tumor therapy: where are we now? Immunology Today, 15, 48–51.

    Article  CAS  PubMed  Google Scholar 

  • Culver, K., Ram, Z., Walbridge, S. et al. (1992) In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science, 259, 1550–2.

    Article  Google Scholar 

  • Culver, K.W., Van Gilder, J., Link, C.J. et al. (1993) Gene therapy for the treatment of malignant brain tumors with in vivo tumor transduction with the herpes simplex thymidine kinase gene/ganciclovir system. Human Gene Ther., 5, 343–77.

    Article  Google Scholar 

  • Elion, G.B. (1980) The chemotherapeutic exploitation of virus-specified enzymes. Adv. Enz. Regul., 18, 53–66.

    Article  CAS  Google Scholar 

  • Freeman, S.M., Abboud, C.N., Whartenby, K.A. et al. (1993) The ‘bystander effect’: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res., 53 5274–83.

    CAS  PubMed  Google Scholar 

  • Gansbacher, B., Houghton, A., Livingston, V. et al.(1992a) A pilot study of immunization with HLA-A2 matched allogeneic melanoma cells that secrete interleukin-2 in patients with metastatic melanoma. Human Gene Ther., 3, 677–90.

    Article  Google Scholar 

  • Gansbacher, B., Motzer, R., Houghton, A. et al .(1992b) A pilot study of immunization with interleukin-2 secreting allogeneic HLA-A2 matched renal cell carcinoma cells in patients with advanced renal cell carcinoma. Human Gene Ther., 3, 691–703.

    Article  Google Scholar 

  • Huber, B.E., Richards, C.A. and Krenitsky, T.T. (1993) In vivo antitumor activity of 5-fluorocytosine on human colorectal cells genetically modified to express cytosine deaminase. Cancer Res., 53, 4619–26.

    CAS  PubMed  Google Scholar 

  • Hwu, P., Yannelli, J., Kriegler, M. et al. (1993) Functional and molecular characterization of tumor-infiltrating lymphocytes transduced with tumor necrosis factor-α cDNA for the gene therapy of cancer in humans. J. Immunol., 150, 4104–15.

    CAS  PubMed  Google Scholar 

  • Lotze, M.T., Rubin, J.T, Carty, S. et al. (1994) Gene therapy of cancer: a pilot study of IL-4-gene-modified fibroblasts admixed with autologous tumor to elicit an immune response. Human Gene Ther., 5, 41–55.

    Article  CAS  Google Scholar 

  • Miller, A.D. (1990) Retrovirus packaging cells. Human Gene Ther., 1, 5–14.

    Article  CAS  Google Scholar 

  • Moolten, F.L. (1986) Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res., 46, 5276–81.

    CAS  PubMed  Google Scholar 

  • Moorman, D.W., Butler, D.A., Stanley, J.D. et al. (1994) Survival and toxicity of xenogeneic murine retroviral vector producer cells in liver. J. Surg. Oncol., 57 (3), 152–6.

    Article  CAS  PubMed  Google Scholar 

  • Nabel, G.J., Chang, A., Nabel, E.G. et al. (1992) Immunotherapy of malignancy by in vivo gene transfer into tumors. Human Gene Ther., 3, 399–410.

    Article  Google Scholar 

  • Nabel, G.J., Nabel, E.G., Yang, Z. et al. (1993) Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc. Natl Acad. Sci. USA, 90, 11307–11

    Article  CAS  PubMed  Google Scholar 

  • Oldfield, E.H., Ram, Z., Culver, K.W. and Blaese, R.M. (1993) A clinical protocol: gene therapy for the treatment of brain tumors using intra-tumoral transduction with the thymidine kinase gene and intravenous ganciclovir. Human Gene Ther., 4, 39–69.

    Article  CAS  Google Scholar 

  • Ram, Z., Culver, K.W., Walbridge, S. et al. (1993a) In situ retroviral-mediated gene transfer for the treatment of brain tumors in rats. Cancer Res., 53, 83–8.

    CAS  PubMed  Google Scholar 

  • Ram, Z., Culver, K.W., Walbridge, S., et al. (1993b) Toxicity studies of retroviral-mediated gene transfer for the treatment of brain tumors. J. Neurosurg., 79, 400–7.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg, S.A., Aebersold, P., Cornetta, K. et al. (1990) Gene transfer into humans — immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N. Engl. J. Med., 323, 570–8.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg, S.A., Kasid, A., Anderson, W.F. et al. (1992) Immunization of cancer patients using autologous cancer cells modified by insertion of the gene for interleukin-2. Human Gene Ther., 3, 75–90.

    Article  Google Scholar 

  • Tepper, R.I., Pattengale, P.K. and Leder, P. (1989) Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell, 57, 503–12.

    Article  CAS  PubMed  Google Scholar 

  • Townsend, S.E. and Allison, J.P. (1993) Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science, 259, 368–70.

    Article  CAS  PubMed  Google Scholar 

  • Trojan, J., Johnson, T.R., Rudin, S.D. et al. (1993) Treatment and prevention of rat glioblastoma by immunogenic C6 cells expressing antisense insulin-like growth factor 1 RNA. Science, 259, 94–7.

    Article  CAS  PubMed  Google Scholar 

  • Tsai, S-C.J., Gansbacher, B., Tait, L., Miller, F.R. and Heppner, G.H. (1993) Induction of antitumor immunity by interleukin-2 gene-transduced mouse mammary tumor cells versus transduced mammary stromal fibroblasts. J. Natl Cancer Inst., 85, 546–53.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Mukhopadhyay, T., Donehower, L.A. et al. (1993) Retroviral vector-mediated transduction of K-ras antisense RNA into human lung cancer cells inhibits expression of the malignant phenotype. Human Gene Ther., 4, 451–60.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Moorman, D.W., Culver, K.W. (1995). Gene transfer and cancer chemotherapy. In: Dickson, G. (eds) Molecular and Cell Biology of Human Gene Therapeutics. Molecular and Cell Biology of Human Diseases Series, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0547-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0547-7_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4242-0

  • Online ISBN: 978-94-011-0547-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics