Skip to main content

The Molten State

  • Chapter
Book cover Polymer Physics
  • 2411 Accesses

Abstract

A fluid phase is a liquid if the kinetic energies of the molecules and the potential energies of their interaction are comparable, so that the molecules can move ‘viscously’ relative to each other. A fluid phase is a gas if the kinetic energies greatly exceed the potential energies of their interaction. The translative kinetic energies of molecules in crystals are negligible. Conventional liquids possess only short-range order; long-range order is absent. Rheology, which is the first topic of this chapter (sections 6.2 and 6.3), is the mathematical discipline within which relationships between stress and strain in liquids are expressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bawden, F. C. and Pirie, N. W. (1937) Proc. Roy. Soc. Lond. Ser. B. 123, 274.

    Article  CAS  Google Scholar 

  • Berger, K. and Baltanf, M. (1988) Mol. Cryst. Liq. Cryst. 157, 109.

    CAS  Google Scholar 

  • Biswas, A. and Blackwell, J. (1988) Macromolecules 21, 3146.

    Article  CAS  Google Scholar 

  • Blumstein, A. and Thomas, O. (1982) Macromolecules 15, 1264.

    Article  CAS  Google Scholar 

  • Calundann, G. W. and Jaffe, M. (1982) Anisotropic polymers, their synthesis and properties, in Proceedings of the Robert E. Welsh Conference on Chemical Research XXVI, Houston, Texas, Synthetic Polymers, p. 247.

    Google Scholar 

  • Chandrasekhar, S. (1977) Liquid crystals, Cambridge University Press, Cambridge.

    Google Scholar 

  • Cottis, S. G., Economy, J. and Novak, B.E. (1972) US Patent 3 637 595. -->

    Google Scholar 

  • de Gennes, P. G. (1971) J. Chem. Phys. 55, 572.

    Article  Google Scholar 

  • Demus, D. and Richter, L. (1978) Textures of Liquid Crystals. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig.

    Google Scholar 

  • Doi, M. (1982) J. Polym. Sci., Polym. Phys. Ed. 20, 1963.

    Article  CAS  Google Scholar 

  • Doi, M. and Edwards, S. F. (1986) The Theory of Polymer Dynamics. Clarendon Press, Oxford.

    Google Scholar 

  • Donald, A. M. and Windle, A. H. (1992) Liquid Crystalline Polymers. Cambridge University Press, Cambridge.

    Google Scholar 

  • Edwards, S. F. (1977) Polymer 9, 140.

    CAS  Google Scholar 

  • Engberg, K., Strömberg, O., Martinsson, J. and Gedde, U. W. (1994a) Polym. Eng. Sci. 34, 1336.

    Article  CAS  Google Scholar 

  • Engberg, K., Ekblad, M., Werner, P.-E. and Gedde, U. W. (1994b) Polym. Eng. Sci. 34, 1346.

    Article  CAS  Google Scholar 

  • Finkelmann, H., Flapp, M., Portugal], M. and Ringsdorf, H. (1978) Makromolekulare Chemie 179, 2541. -->

    Article  CAS  Google Scholar 

  • Finkelmann, H. and Rehage, G. (1984) Adv. Polym. Sci. 60–61, 99.

    Article  Google Scholar 

  • Flory, P. J. (1956) Proc. Roy. Soc. 234A, 73.

    Google Scholar 

  • Flory, P. J. and Ronca, G. (1979) Mol. Cryst. Liq. Cryst. 54, 289.

    Article  CAS  Google Scholar 

  • Gedde, U. W., Jonsson, H., Hult, A. and Percec, V. (1992) Polymer 33, 4352.

    Article  CAS  Google Scholar 

  • Graessley, W. W. (1982) Adv. Polymer Sci. 47, 68.

    Google Scholar 

  • Graessley, W. W. (1984) Viscoelasticity and flow in polymer melts and concentrated solutions, in Physical Properties of Polymers, 2nd edn. (J. E. Mark, ed.). American Chemical Society, Washington, DC. -->

    Google Scholar 

  • Gutierrez, G. A., Chivers, R. A., Blackwell, J., Stamatoff, J. B. and Yoon, H. (1983) Polymer 24, 937.

    Article  CAS  Google Scholar 

  • Hermans, P. H. (1946) in Physics of Cellulose Fibres, Elsevier, Amsterdam.

    Google Scholar 

  • Ishihara, A. (1951) J. Chem. Phys. 19, 1142.

    Article  CAS  Google Scholar 

  • Jackson, W. J. and Kuhfuss, H. F. (1976)). Polym. Sci., Polym. Chem. Ed. 14, 2043.

    Article  CAS  Google Scholar 

  • Jo, B.-W., Lenz, R. W. and Lin, J.-I. (1982) Macromol. Chemie, Rapid Commun. 3, 23.

    Article  CAS  Google Scholar 

  • Jud, K., Kausch, H. H. and Williams, J. G. (1981) J. Mater. Sci. 16, 204.

    Article  CAS  Google Scholar 

  • Kwolek, S. L. (1971) DuPont, US Patent 3 600 350.

    Google Scholar 

  • Lin, J.-I., Antoun, S., Ober, C. and Lenz, R. W. (1980) Brit. Polym. J. 12, 132.

    Google Scholar 

  • Magda, J. J., Baek, S.-G., DeVries, K. L. and Larson, R. G. (1991) Macromolecules 24, 4460.

    Article  CAS  Google Scholar 

  • Maier, W. and Saupe, A. (1959) Z. Naturforschung 14a, 882.

    CAS  Google Scholar 

  • Maier, W. and Saupe, A. (1960) Z. Naturforschung 15a, 287.

    CAS  Google Scholar 

  • Marucci, G. (1991) Macromolecules 24, 4176.

    Article  Google Scholar 

  • Meurisse, P., Noël, C., Monnerie, L. and Fayolle, B. (1981) Brit. Polym. J. 13, 55.

    Article  CAS  Google Scholar 

  • Miller, A. A. (1963) J. Polym. Sci. Part A 1, 1857.

    CAS  Google Scholar 

  • Mitchell, D. R. (1985) Faraday Discussion Chem. Soc. 79, 55.

    Article  Google Scholar 

  • Onagi, S. and Asada, T. (1980) Rheology and rheo-optics of polymer liquid crystals, in Rheology, Vol. 1 (G. Astarita, G. Marucci and L. Nicolais, eds). Plenum, New York.

    Google Scholar 

  • Onsager, L. (1949) Ann. N.Y. Acad. Sci. 51, 627.

    Article  CAS  Google Scholar 

  • Robinson, C. (1956) Trans. Faraday Soc. 52, 571.

    Article  CAS  Google Scholar 

  • Rouse, P. E. (1953) J. Chem. Phys. 21, 1272.

    Article  CAS  Google Scholar 

  • Vertogen, G. and de Jeu, W. H. (1988) Thermotropic Liquid Crystals: Fundamentals, Springer Series in Chemical Physics 45. Springer-Verlag, Berlin.

    Google Scholar 

  • Windle, A. H., Viney, C., Golombeck, R., Donald, A. M. and Mitchell, D. R. (1985) Faraday Discussion Chem. Soc. 79, 55.

    Article  CAS  Google Scholar 

Suggested Further Reading

  • de Gennes, P. G. (1974) The Physics of Liquid Crystals. Clarendon Press, Oxford.

    Google Scholar 

  • de Gennes, P. G. (1979) Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca, NY, and London.

    Google Scholar 

  • Ferry, J. D. (1980) Viscoelastic Properties of Polymers, 3rd edn. Wiley, New York.

    Google Scholar 

  • Gray, G.W. and Goodby, J. W. (1984) Smectic Liquid Crystals. Leonard Hill, Glasgow.

    Google Scholar 

  • McArdle, C. B. (ed.) (1989) Side-chain Liquid Crystal Polymers. Chapman & Hall, New York.

    Google Scholar 

  • Samulski, E. T. (1993) The mesomorphic state, in Physical Properties of Polymers, 2nd edn. (J. E. Mark, ed.) American Chemical Society, Washington, DC.

    Google Scholar 

  • Woodward, A. E. (1989) Atlas of Polymer Morphology. Hanser, Munich, Vienna and New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gedde, U.W. (1999). The Molten State. In: Polymer Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0543-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0543-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-62640-1

  • Online ISBN: 978-94-011-0543-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics